
Database Systems Lecture Slides
CRN 32741, UMC G400 10045

Dr Bryant

Semester 1 of 2023/2024

Introduction

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford 31 August 2023

Page 1

Databases

Introduction

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.

Some Applications of Database Systems
• Purchase from the supermarket

– bar code reader linked to database

– price retrieval

– stock-control

• Purchases using your credit card
– credit limit check

– security check

• Using the local library
– details of books, readers, reservations etc

• Using the internet
– many sites driven by database applications

– e.g., on-line bookstore

Content
• File-based Systems

– characteristics

– limitations

• What is a Database?

• DataBase Management System
– definition

– typical functions

– people involved

– advantages and disadvantages

• Relational Databases
– Primary and Foreign Keys

• Summary and Reading

File-based Systems

• An early attempt to computerise paper-
based file systems.

• A collection of application programs.

• Each one performs services for the end
users.

• Each program defines and manages its own
data.

• Understanding the limitations may help
avoid repeating these problems in database
systems.

Limitations of a File-based Approach

• Separation and isolation of data.

• Incompatible file formats.

• Fixed Queries/ Proliferation of application
programs.

• Duplication of data.

• Data dependence. See next two slides}

Duplication of Data
• E.g., data is duplicated in the Payroll and

Personnel departments.

• Costs time and money to enter data more
than once.

• Requires additional storage space.

• Can lead to a loss of data integrity,
i.e., the data is no longer consistent.

– E.g., if a member of staff moves house and the
change of address is communicated to Personnel
only, the member’s payslip will be sent to the
wrong address.

1 2

3 4

5 6

Introduction

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford 31 August 2023

Page 2

Data Dependence

• The physical structure and storage of
the data files and records are defined in
the application code.

• Makes it difficult to change structure.

• Any change to the structure could result
in many programs having to be
modified and retested.

Definitions of a Database
1. A shared collection of logically related data

(and a description of this data), designed
to meet the information needs of an
organisation.

2. A self-describing collection of integrated
records.

The database holds not only the
organisation’s operational data but also a
description of this data.

We will consider what is meant by “logically
related” in a subsequent lecture.

A Simple View of a Database System

• Database Systems are characterised by:
– A collection of data stored on files (a.k.a. the Database).
– A piece of software called a DataBase Management

System (DBMS).
– A variety of users who use User Programs.

Orders

Payroll

Customers

DBMS
e.g., Access
e.g., Oracle

Database

Access to the Database is controlled by the DBMS.

Content
• File-based Systems

– characteristics

– limitations

• What is a Database?

• DataBase Management System
– definition

– typical functions

– people involved

– advantages and disadvantages

• Relational Databases
– Primary and Foreign Keys

• Summary and Reading

DataBase Management System (DBMS)

A software system that enables
users to define, create, and
maintain the database and which
provides controlled access to this
database.

The DBMS (continued)

• As users of a database we use the DBMS to

access data in the following ways:

1. Add new data

2. Delete data

3. Update data

4. Retrieve data

• The above can be achieved through User

Programs.

7 8

9 10

11 12

Introduction

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford 31 August 2023

Page 3

Four Useful Functions of the DBMS

1. Data Integration
- DBMS ensures that data is stored efficiently.
- Minimises duplication and redundancy.

2. Data Integrity
- DBMS ensures that data is not corrupted or made

inconsistent.
3. Data Security

- DBMS ensures that data is not lost or does not become
inconsistent through system failures, or through deliberate
or accidental corruption.

4. Data Independence
- DBMS isolates users from actual physical data.
- User is presented with a logical model of database.

We study logical models in a subsequent lecture.

People Involved with a DBMS
• Now that we know what a DBMS is, we can

ask the following questions.

Who takes responsibility for a DBMS?

Who develops a DBMS?

Who uses it?

• In other words, what roles do people play in
the database environment?

Roles in the Database Environment
• Data Administrator

– consults and advises senior manages,

– ensures database supports corporate objectives.

• Database Administrator
– more technically orientated than Data Administrator,
– has ultimate control over how the data is structured and

who has what kind of access to the data.

• Database Designers
• Application Programmers

– designers and creators of user programs.

• End Users
– the clients i.e., those who use the database regularly.
– vary from naïve to sophisticated.

– have no control over how user programs work.

Some of the Advantages of DBMSs
• Reduce data duplication.

• Reduce risk of inconsistencies occurring in the data.

• More Users share more of the data.

• Improved security.

• Improved data accessibility and responsiveness.

– Departmental boundaries can be crossed.

– Users can get answers to ad hoc queries
immediately.

– DBMSs provide a query language, e.g., SQL.

Some of the Advantages of DBMS
(continued)

• Increased productivity.

– DBMS provides many of the standard functions
that the programmer would normally have to
write in a file-based system.

• Improved maintenance through data
independence.

– DBMS separates the data descriptions from the
applications.

• Improved backup and recovery services.

Disadvantages of DBMS
• Extremely complicated.

• Extremely large.

• May be very expensive if it is for a large
organisation.

• May require additional disc storage.

• Cost of conversion.

• Performance of general-purpose DBMS may
not be as good as a file-based system
written for a specific purpose.

• Higher impact of a failure.

13 14

15 16

17 18

Introduction

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford 31 August 2023

Page 4

Summary so Far
• Understanding the limitations of a file-based

approach may help avoid repeating these
problems in database systems.

• A database is a shared collection of logically
related data (and a description of this data),
designed to meet the information needs of an
organisation.

• A DBMS is a software system that enables users to
define, create, and maintain the database and
which provides controlled access to this database.

• Users of a database use the DBMS to add, delete,
update and retrieve data.

Content
• File-based Systems

– characteristics

– limitations

• What is a Database?

• Data Base Management System
– definition

– typical functions

– people involved

– advantages and disadvantages

• Relational Databases
– Primary and Foreign Keys

• Summary and Reading

The Relational DBMS
• The dominant DBMS in use today.

• Estimated sales of approximately
$15-$20 billion per year.

• Long history by computing
standards.
–Based on a seminal paper by

E.F.Codd published in 1970.

• Simple logical structure.

• Sound theoretical foundation.

Relational Databases
In Relational Databases, data is stored in files called

relations (a.k.a. tables).
• A relation consists of rows and columns.
• A relation carries data on one kind of entity,

e.g., students.

Convention for describing relations is:

entity-name (<list of attributes>)

E.g., Students(name, address, age).

Table: Students
Attributes: name address age

Bobby Deansgate 17
Helen Piccadilly 21
Helen Eccles 18
Freddy Ordsall 30

Columns are a.k.a.
attributes or fields.

Rows are a.k.a.
tuples or records.

Duplicate Values
Table: Students
Attributes: name address age

Bobby Deansgate 17
Helen Piccadilly 21
Helen Eccles 18
Freddy Ordsall 30

The problem with the above table is that Helen cannot
be uniquely identified.

We need a column in the table which has a set of
values containing no duplicates, so that every row is
uniquely identified.

- No such column exists in the above table.

- The above table is not strictly a relation.

- We need to add a PRIMARY KEY attribute.

Primary Key
Table: Students
Attributes: name address age

Bobby Deansgate 17
Helen Piccadilly 21
Helen Eccles 18
Freddy Ordsall 30

Hence

Table: Students
Attributes: studentID name address age

100 Bobby Deansgate 17
200 Helen Piccadilly 21
300 Helen Eccles 18
400 Freddy Ordsall 30

Students table is now described as:

Students(studentID, name, address, age)

i.e., underline the primary key and make it 1st attribute in list.

becomes

19 20

21 22

23 24

Introduction

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford 31 August 2023

Page 5

The Database
Consider the new Students table again:

Table: Students
Attributes: studentID name address age

100 Bobby Deansgate 17
200 Helen Piccadilly 21
300 Helen Eccles 18
400 Freddy Ordsall 30

This is extremely inefficient because there is
repeating data. We want data to appear just once.

Suppose we wish to store with each student
information on the modules they take, i.e.:
Table: Students
Attributes: studentID name address age module_name location

100 Bobby Deansgate 17 Computing Newton
200 Helen Piccadilly 21 Computing Newton
300 Helen Eccles 18 Biology Peel
400 Freddy Ordsall 30 Chemistry Cockcroft

Foreign Key
It would be better to split the Students table into 2 tables (i.e.
Students and Modules) with a link (a.k.a. relationship) between
them.

Table: Student
studentID name address age moduleID

100 Bobby Deansgate 17 C100
200 Helen Piccadilly 21 C100
300 Helen Eccles 18 C200
400 Freddy Ordsall 30 C300

An attribute that is linked to the primary key of another table is
known as a foreign key.

A foreign key provides an index into another table.
E.g., Bobby is doing module C100 which indexes
Computing in the Modules table.

Table: Modules
moduleID module_name location
C100 Computing Newton
C200 Biology Peel
C300 Chemistry Cockcroft

Relational Databases - Summary

• The dominant DBMS in use today.

• Long history by computing standards.

• Simple logical structure.

• Primary keys uniquely identify each
row (or tuple or record) of a relation.

• An attribute that is linked to the
primary key of another table is known
as a foreign key.

Further Reading

Chapter 1 of (Connolly & Begg, 2014)

or

Chapter 1 of (Connolly & Begg, 2004)

The list of references is on the final
page of the exercise booklet.

25 26

27 28

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

Databases

Queries In Relational
Databases

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.

Content
• Recap on Relational Databases

• Structured Query Language (SQL)

• Select queries
–Single table

 basic queries

 more elaborate queries

–Multi table
 different ways of joining tables

• Summary and Reading

Recap: Relational Databases

• The dominant DBMS in use today.

• Long history by computing
standards.

• Simple logical structure.

Recap: Terminology

• Primary keys uniquely identify each tuple of
a relation.

• An attribute that is linked to the primary key
of another table is known as a foreign key.

Formal term Alternative 1 Alternative 2
Relation Table File
Tuple Row Record

Attribute Column Field

Structured Query Language
• Pronounced S-Q-L

(or sometimes See-Quel)

• Most common query language.

• Became an ISO standard in 1987.
– International Standards Organisation.

• Sound theoretical foundation:
– has constructs based on the tuple relational

calculus.

Queries in Relational Databases

• Query - a question that you want to
ask about the data.

• Querying can be done using the SQL
SELECT query.

–Retrieves data from tables of the
database.

–Data in the tables is left unchanged.

–May require some conditions.

1 2

3 4

5 6

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

SQL SELECT statement
• Queries may be created in a DBMS using the

SQL SELECT statement.

• The basic standard syntax is:

SELECT <list of attributes>
FROM <table name>

[WHERE <condition(s)>];
Square brackets
indicate WHERE
clause is optional.

SELECT specifies which columns are to appear in the result.

FROM specifies the table(s) to be used.

WHERE filters the rows subject to some condition.

Content
• Recap on Relational Databases

• Structured Query Language (SQL)

• Select queries
–Single table

 basic queries

 more elaborate queries

–Multi table
 different ways of joining tables

• Summary and Reading

Subject of Examples

• The next 10 examples I will give
during this lecture concern data on:
–drivers;
–number of penalty points on their

licence.

Single-Table Select Queries

Drivers
driverID name address points

D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Consider the following table on which we will
perform single-table select queries:

The results of a query are data laid out in a
tabular manner and are not stored
permanently.

SELECT Example 1

Drivers

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List all the ids (driverID) from the Drivers
table.

SELECT driverID
FROM Drivers;

Example_1

driverID
D010
D020
D030
D040
D050

NOTE: There is no use of the WHERE clause.

SELECT driverID

SELECT Example 2

Drivers

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List all the ids (driverID) and points from
the Drivers table.

SELECT driverID, points
FROM Drivers;

Example_2

driverID points
D010 7
D020 4
D030 2
D040 3
D050 12

NOTE: We use commas to separate columns (attributes).

SELECT driverID, points

7 8

9 10

11 12

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

SELECT Example 3

SELECT *
FROM Drivers;

Drivers

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Example_3

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List all the attributes (i.e., all the
columns) from the Drivers table.

NOTE: We use * (asterisk) for all columns (attributes).

SELECT *

SELECT Example 4

Drivers

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List all the ids (driverID) of the drivers in
the Drivers table who are from Dundee.

SELECT driverID
FROM Drivers
WHERE address = “Dundee”;

Example_4

driverID
D020
D030

SELECT driverID

WHERE address = “Dundee”;

Content
• Recap on Relational Databases

• Structured Query Language (SQL)

• Select queries
–Single table

 basic queries

 more elaborate queries

–Multi table
 different ways of joining tables

• Summary and Reading

Extending SELECT
• Consider the following questions.

List all the names and addresses of the drivers whose address
begin with the letters “St”.

List the names of drivers from Dundee or Aberdeen.

Calculate the number of drivers.

List the names of drivers whose licence points are between 7
and 15.

List the names of drivers in alphabetical order.

• Can we write SELECT statements to answer these questions?

To do so, we need to go beyond the basic syntax.

The LIKE clause
• Sometimes we may want to pattern match

within certain columns (attributes) of a table.

• E.g., list the names and addresses of drivers
whose addresses begin with string “St”.

Standard Access Meaning Example

_
underscore

? matches a
single character

LIKE “Sm?th”

% * matches any
number of
characters

LIKE “St*”

SELECT Example 5

Drivers

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List all the names and addresses of the
drivers whose address begin with the letters “St”
from the Drivers table.

SELECT name, address
FROM Drivers
WHERE address LIKE “St*”;

Example_5

name address
John Stirling

SELECT name, address
WHERE address LIKE “St*”;

13 14

15 16

17 18

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

The IN Operator

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

The IN operator is used to check if an attribute(s) has a
value from a set of values.

[NOT] IN (<value-list>)

Example_6a
name
Jimmy
David
Bobby

Syntax is:

EXAMPLE 6: Given the following table:

a) List the names of drivers from Dundee or Aberdeen.
SELECT name
FROM Drivers
WHERE address IN (‘Dundee’, ‘Aberdeen’);

b) List the names of drivers not from Dundee or Aberdeen.
SELECT name
FROM Drivers
WHERE address NOT IN (‘Dundee’, ‘Aberdeen’);

Example_6b
name
Fred
John

Aggregate Functions
Aggregate functions perform calculations on the values

in the column of a table.

COUNT - counts the number of values in a column.

SUM - calculates the sum (total) of all values in a
column.

AVG - calculates the average of all values in a column.

MAX - gets the maximum value in a column.

MIN - gets the minimum value in a column.

SELECT Example 7

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Calculate
• the number of drivers,
• the total number of points,
• the average number of points, and
• the range of points from the Drivers table.

SELECT COUNT(driverID), SUM(points), AVG(points),
MAX(points) - MIN(points)
FROM Drivers;

Example_7

COUNT(driverID) SUM(points) AVG(points) MAX(points)-MIN(points)
5 28 5.6 10

SELECT Example 8

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List the names of drivers whose licence
points are between 7 and 15 from the Drivers table.

SELECT name
FROM Drivers
WHERE points >= 7 AND points <= 15;

Example_8
name
Fred
Bobby

SELECT name
WHERE points >=7
AND points <= 15;

SELECT Example 9

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List in alphabetical order the names of
drivers whose licence points are between 7 and 15
from the Drivers table.

SELECT name
FROM Drivers
WHERE points >= 7 AND points <= 15
ORDER BY name;

Example_9
name
Bobby
Fred

SELECT name
WHERE points >=7
AND points <= 15;

SELECT Example 10

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

EXAMPLE: List in reverse alphabetical order the names
of drivers whose licence points are between 7 and 15
from the Drivers table.

SELECT name
FROM Drivers
WHERE points >= 7 AND points <= 15
ORDER BY name DESC;

Example_9
Name
Fred
Bobby

NOTE: DESC means descending

SELECT name
WHERE points >=7
AND points <= 15;

19 20

21 22

23 24

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

Summary: Single Table Queries
• The basic standard syntax is:

SELECT <list of attributes>
FROM <table name>

[WHERE <condition(s)>] ;

• Can pattern match within certain columns of a table.

- LIKE clause

• Can check if a column has a value from a set of values.

- IN operator

• Can perform calculations on values in a table.

- aggregate functions

• Can make queries have a choice or be more specific.

- OR and AND clauses

• Can sort output of a query into ascending/descending order.

- ORDER BY clause

Content
• Recap on Relational Databases

• Structured Query Language (SQL)

• Select queries
–Single table

 basic queries

 more elaborate queries

–Multi table
 different ways of joining tables

• Summary and Reading

Multi-Table Select Queries
Sometimes we need data from more than one table.

• This requires JOINING the tables to form a
SUPERTABLE.

• There are 4 broad categories of joining:

1. product join

2. inner join (a.k.a. an equi-join)

3. left outer join

4. right outer join

Multi-Table Select Queries
• Suppose in some database we

have the following 2 linked tables:

Customer
custID name address

C100 Allan Aberdeen
C101 John Dundee
C102 Betty Stirling

Order
orderID custID date

2000 C100 2001-11-20
3000 C101 2001-11-27
4000 C456 2001-11-30

Say we want the following query.
List data on all orders including customer
names and addresses.

Product Join
• Simplest of all the joins.
• Combines the 2 sets of columns and forms every

possible combination of rows.
E.g., Customer PRODUCT Order

custID name address orderID custID2 date
C100 Allan Aberdeen 2000 C100 2001-11-20
C101 John Dundee 2000 C100 2001-11-20
C102 Betty Stirling 2000 C100 2001-11-20
C100 Allan Aberdeen 3000 C101 2001-11-27
C101 John Dundee 3000 C101 2001-11-27
C102 Betty Stirling 3000 C101 2001-11-27
C100 Allan Aberdeen 4000 C456 2001-11-30
C102 Betty Stirling 4000 C456 2001-11-30
C101 John Dundee 4000 C456 2001-11-30

Achieved in SQL with: SELECT *
FROM Customer, Order;

Inner Join (a.k.a. Equi-Join)
• Any link between tables is preserved.
• A product join is performed but only those

rows where the linking attributes match is
retained.

E.g Customer INNER JOIN Order

custID name address orderID custID date
C100 Allan Aberdeen 2000 C100 2001-11-20
C101 John Dundee 3000 C101 2001-11-27

Achieved in SQL with:
SELECT *
FROM Customer, Order
WHERE Customer.custID = Orders.custID;

25 26

27 28

29 30

Queries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 6

Inner Join (continued)

• More useful kind of join for data
retrieval.

• Contains all the orders and full details
of all the associated customers, bar
one,

• i.e., orderID = 4000 which has an
unmatched customer.

–Break in database integrity.

Left Outer Join
This is like an Inner Join but any rows in the

1st table that do not have a match in the 2nd

table are still included in the output, but
matched to NULL.

E.g., Customer LEFT OUTER JOIN Order

custID name address orderID date
C100 Allan Aberdeen 2000 2001-20-11
C101 John Dundee 3000 2001-11-27
C102 Betty Stirling NULL NULL

SELECT *
FROM Customer, Order
WHERE Customer.custID = Orders.custID(+);

i.e., may be NULL

Right Outer Join
This is like an Inner Join but any rows in the

2nd table that do not have a match in the 1st

table are still included in the output, but
matched to NULL.

E.g., Customer RIGHT OUTER JOIN Order

name address orderID custID date
Allan Aberdeen 2000 C100 2001-11-20
John Dundee 3000 C101 2001-11-27
NULL NULL 4000 C456 2001-11-30

SELECT *
FROM Customer, Order
WHERE Customer.custID(+) = Orders.custID;

Rest of query works on supertable
• Performing a multi-table queries requires joining the tables to

form a supertable.

– It is from this supertable that data is extracted.

• The type of join will determine the contents of the supertable
and hence what data can be extracted.

SELECT name, orderID
FROM Customer, Order
WHERE Customer.custID(+) = Order.custID
AND date > 25/11/01;

name address orderID custID date
Allan Aberdeen 2000 C100 2001-11-20
John Dundee 3000 C101 2001-11-27
NULL NULL 4000 C456 2001-11-30

name orderID
John 3000
NULL 4000

Summary: Multi Table Queries

• Sometimes we need data from more
than one table.

• Requires joining the tables to form a
supertable.

• 4 broad categories of joining:

1. product join

2. inner join (a.k.a. an equi-join)

3. left outer join

4. right outer join

Further Reading
Sections 6.3.1 and 6.3.2. of (Connolly & Begg, 2014)

or

pages 41-53 of (Connolly & Begg, 2004)

or

Chapter 2 and Section 5.1 of (Donahoo & Speegle,
2005)

or

Section 3.3.1 and 3.3.2 of (Silberschatz et al., 2019).

The references are on the last page of the exercise
booklet.

31 32

33 34

35 36

More SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

More SQL

Dr Bryant

Databases

Not to be reused without permission. © University of Salford, 2023

Content
• Renaming columns in query results using an

attribute alias.

• Eliminating duplicate rows from a query’s results.

• Grouping rows in a table.

• Updating values of attributes.

• Deleting rows from a table.

• Inserting data to an existing table.

• Summary

• Reading

driver# name address points

D010 Fred Perth 7

D020 Jimmy Dundee 4

D030 David Dundee 2

D040 John Stirling 3

D050 Bobby Aberdeen 12

Recap: Querying a Relational Database

Suppose that a
database has a
table called
Drivers:

QUERY: List all the ids (driver#) of the drivers in the
Drivers table who are from Dundee.

SELECT driver#
FROM Drivers
WHERE address = “Dundee”;

driver#

D020

D030

gives

Attribute Alias
• Recall that a SELECT query extracts data from tables

of the database but the data in the tables is left

unchanged.

• We can think of the result of the execution of a SQL

query as generating a completely new table which

usually only exists long enough to output the results.

• By default, the names of the columns in the table of

results are the same as the names of the attributes in

the original table.

• We can override this default behaviour by specifying

an attribute alias using the SQL reserved word AS.

Example of Attribute Alias

DriverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Suppose we have a relation Drivers.

SELECT driverID AS DriverNumber
FROM Drivers;

DriverNumber
D010
D020
D030
D040
D050

gives

DISTINCT

DriverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

We can eliminate duplicate rows from a query’s
results if we add the SQL reserved word DISTINCT.

SELECT address
FROM Drivers
WHERE DriverID
IN (D020, D030);

address
Dundee
Dundee

gives

SELECT DISTINCT address
FROM Drivers
WHERE DriverID
IN (D020, D030);

gives address
Dundee

Suppose we have a
relation Drivers.

1 2

3 4

5 6

More SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

Recap: Aggregate Functions
Aggregate functions perform calculations on the values

in the column of a table.

COUNT - counts the number of values in a column.

SUM - calculates the sum (total) of all values in a
column.

AVG - calculates the average of all values in a column.

MAX - gets the maximum value in a column.

MIN - gets the minimum value in a column.

Recap: Aggregate Functions Example

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Calculate the number of drivers, the total number of
points and the average number of points.

SELECT COUNT(driverID), SUM(points), AVG(points)
FROM Drivers;

COUNT(driverID) SUM(points) AVG(points)
5 28 5.6

Content
• Renaming columns in query results using an

attribute alias.

• Eliminates duplicate rows from a query’s results.

• Grouping rows in a table.

• Updating values of attributes.

• Deleting rows from a table.

• Inserting data to an existing table.

• Summary

• Reading

GROUP BY
The GROUP BY clause is used to group rows of a query.

The GROUP BY clause is used with aggregate
functions
i.e., COUNT, AVG, SUM, MAX etc.

Syntax is:

SELECT <attributes(s)>, <column function(s)>
FROM <table(s)>
[WHERE <condition(s)>]
GROUP BY <attributes(s)>;

NOTE: the <attributes(s)> that appear in the SELECT
part must also appear in the GROUP BY part.

GROUP BY Example 1
DriverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

SELECT address, SUM(points)
FROM Drivers
GROUP BY address;

address SUM(points)
Perth 7
Dundee 6
Stirling 3
Aberdeen 12

gives

Suppose we have a
relation Drivers.

Address count(niNo)
Aberdeen 2
Dundee 2
Stirling 1

GROUP BY Example 2
Given the following table:

Employees
niNo name address salary
NS 111111 Fred Aberdeen 15,000
NS 222222 Bobby Dundee 20,000
NS 333333 Dave Aberdeen 12,000
NS 444444 Steve Stirling 10,000
NS 555555 Betty Dundee 25,000

Show, for each address, the number of employees that
live there.

SELECT address, COUNT(niNo)
FROM Employees
GROUP BY address;

7 8

9 10

11 12

More SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

GROUP BY Example 2 (continued)

In order to do the previous query, an intermediate
table is created that is grouped by (sorted on)
address.

Employees

niNo name address salary
NS 111111 Fred Aberdeen 15,000
NS 333333 Dave Aberdeen 12,000
NS 222222 Bobby Dundee 20,000
NS 555555 Betty Dundee 25,000
NS 444444 Steve Stirling 10,000

count(niNo) is applied to each of the 3 groupings.

grouping 1

grouping 2

grouping 3

HAVING Clause
The HAVING clause is used with the GROUP BY
clause to filter groups of rows.

Syntax is:

SELECT <attributes(s)>, <column function(s)>
FROM <table(s)>
[WHERE <condition(s)>]
GROUP BY <attributes(s)>
HAVING <condition(s)>;

Groups for which the HAVING condition does not
evaluate to true are not included in the output.

HAVING Example
Given the following table:

Employees
niNo name address salary
NS 111111 Fred Aberdeen 15,000
NS 222222 Bobby Dundee 20,000
NS 333333 Dave Aberdeen 12,000
NS 444444 Steve Stirling 10,000
NS 555555 Betty Dundee 25,000

Show the addresses whose employees’ average salary is greater
than £21,000. Also show the average salary.

SELECT address, AVG(salary)
FROM Employees
GROUP BY address
HAVING AVG(salary) > 21000;

address avg(salary)
Dundee 22500

NOTE: compare with intermediate table from 2 slides ago

Comparison of
HAVING and WHERE

• They serve different purposes.

• The WHERE clause removes rows
before grouping.

• The HAVING clause filters groups.

• Aggregate functions cannot be used
in the WHERE clause.

Content
• Renaming columns in query results using an

attribute alias.

• Eliminates duplicate rows from a query’s results.

• Grouping rows in a table.

• Updating values of attributes.

• Deleting rows from a table.

• Inserting data to an existing table.

• Summary

• Reading

Changing Data in Tables
• The SELECT query extracts data

from tables,

– the tables remain unchanged.

• We can have queries which change
the data in the tables:

–UPDATE queries,

–DELETE queries,

–INSERT queries.

13 14

15 16

17 18

More SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

UPDATE Queries
• Allow you to change the values of attributes

of existing rows (tuples) of a table.

– May be subject to some condition.

• Achieved using the SQL UPDATE command.

UPDATE <table name>

SET <attribute assignments>

[WHERE <condition(s)>] ;

Square brackets indicate
WHERE clause is optional

UPDATE Query Example 1

Drivers before

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Change the points of the driver whose id (driverID) is
D040 from 3 to 6.

UPDATE Drivers

SET points = 6

WHERE driverID = “D040”;

Drivers after

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D050 Bobby Aberdeen 12

UPDATE Query Example 2

Drivers before

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D050 Bobby Aberdeen 12

Suppose that Jimmy moves to Salford.

UPDATE Drivers

SET address = “Salford”

WHERE driverID = “D020”;

Drivers after

driverID name address points
D010 Fred Perth 7
D020 Jimmy Salford 4
D030 David Dundee 2
D040 John Stirling 6
D050 Bobby Aberdeen 12

DELETE Queries
• Allow you to delete whole rows (tuples),

NOT individual values.

– May be subject to some condition.

• Achieved using the SQL DELETE command.

DELETE FROM <table name>

[WHERE <condition(s)>] ;

Square brackets indicate
WHERE clause is optional.

DELETE Example 1

Delete all data on drivers with more than 10 points.

DELETE FROM Drivers

WHERE points > 10 ;

Drivers before

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D050 Bobby Aberdeen 12

Drivers after

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6

DELETE Example 2
Delete all the data on drivers who live in Dundee.

DELETE FROM Drivers

WHERE address = “Dundee” ;

Drivers before

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3

Drivers after

driverID name address points
D010 Fred Perth 7
D040 John Stirling 6

19 20

21 22

23 24

More SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

INSERT Queries

INSERT INTO <table name> [(<attribute list>)]

<SELECT statement> | VALUES (<value list>);

<attribute list> is optional (used for partial information)

The | symbol indicates that you must either use the
SELECT statement or the VALUES clause but not both
at the same time.

An INSERT query will add data to an existing table
without deleting it or any of its records.

INSERT - Example 1
Add a new driver into the Driver table whose id
(driverID) is D060, name is Betty, address is Inverness
and points is 6.

INSERT INTO Drivers
VALUES (“D060”, “Betty”, “Inverness”, 6);

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D060 Betty Inverness 6

INSERT - Example 2
Add a new driver into the Driver table whose id
(driverID) is D070, name is Jeannie, and no address
and points information is given.

INSERT INTO Drivers (driverID, name)
VALUES (“D070”, “Jeannie”);

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D060 Betty Inverness 6

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6
D060 Betty Inverness 6
D070 Jeannie

Summary
• Rename a column in a query’s results using

AS.

• DISTINCT eliminates duplicate rows from a
query’s results.

• Query on groups of rows of a table using the
GROUP BY and HAVING clauses.

• Change the data in the tables using:

– UPDATE

– DELETE (whole rows)

– INSERT (whole or part of rows)

Further Reading
Sections 6.3.4 and 6.3.10 of (Connolly & Begg, 2014)

or

Sections 3.2.5 and 3.2.8 of (Connolly & Begg, 2004)

or

Chapter 4 of (Donahoo & Speegle, 2005)

or

Sections 3.7 and 3.9 of (Silberschatz et al., 2019)

The list of references is on the final page of the
exercise booklet.

25 26

27 28

29

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

Data Description Language:
Creating, Altering and

Destroying Tables Using SQL

Dr Bryant

Databases

Not to be reused without permission. © University of Salford, 2023.

Introduction

As well as querying and changing data,
there are other things we can do in
SQL, such as:

• Create relations (tables) using the
CREATE TABLE statement.

• Modify relations using the ALTER
TABLE statement.

• Destroy relations using the DROP
TABLE statement.

Content
• SQL Data Types

• A special value - NULL

• Creating a table

– default values

– constraints

• Adding columns to tables

• Destroying tables

• Summary and Reading

SQL Data Types for Character Strings

The most common SQL data types are:

• CHARACTER(L) or CHAR(L)

– A fixed-length character string containing exactly L
characters.

– If the string contains fewer characters, then the remaining
characters contain padding characters.

– The padding characters are usually spaces.

• CHARACTER VARYING(L) or VARCHAR(L)

– A variable-length character string that may hold up to L
characters.

– Only the specified number of characters are stored, so
there is never any padding.

SQL Data Types for Numeric Data

The most common SQL numeric data types are:

• INTEGER or INT

– A signed whole number.

– The range of possible values is DBMS dependent.

• NUMERIC(P,S)

– A signed, fixed-point number.

– P (precision) specifies the total number of digits in the
number.

– S (scale) specifies the number of digits to the right of the
decimal place.

– E.g., NUMERIC(5,2) specifies a type ranging from -999.99 to
999.99.

SQL Data Type Boolean
• A type which can only have one of three

values: true, false and unknown.

• The name Boolean commemorates George
Boole (1815-1864) who first placed the
study of logic on a sound mathematical
basis.

• We use logic to reason about truth.

• Sometimes we just want to record (in a
database) whether something is true or not.

1 2

3 4

5 6

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

SQL Data Types for Temporal Data

• DATE YYYY-MM-DD
– When you do not care about the time of an event.

– E.g., birthday.

• TIME HH:MM:SS
– When you do not care about the date.

– E.g., time a cafe opens to serves lunch.

• TIMESTAMP YYYY-MM-DD HH:MM:SS
– When you need to record the date and time of an event.

– E.g., the time an order is placed.

• INTERVAL
– Refers to a period of time, i.e., a time span.

– E.g., a warranty period. E.g., 90 days.

SQL Data Types for Large Objects

• SQL binary types are designed to store
sequences of binary digits.

• Binary types are commonly used for
photographs, sounds and movies.

• BINARY LARGE OBJECT(L) or BLOB(L)

– A large, variable-length binary string.

– May hold up to L bytes.

Summary - SQL Data Types

CHAR(<size>)
Fixed length string of length <size>.
Shorter strings are padded with blanks on RHS.

VARCHAR(<size>)
Variable length string of maximum length <size>.
Only the characters entered are stored.

NUMERIC(<precision>,<scale>)
Real number with:

<precision> i.e., total number of digits excluding point.
<scale> i.e., total number of decimal places.

INTEGER

BOOLEAN

DATE

TIME

BLOB

NULL

• Indicates that the value of an attribute is
unknown.

• Note that a database value of NULL is not
the same as a space or zero.

• Unless explicitly forbidden, NULL is a valid
value for any data type.

Content

• SQL Data Types

• Creating a table

–default values

–constraints

• Adding columns to tables

• Destroying tables

• Summary and Reading

Creating Tables in SQL
Relations (tables) are created in SQL using CREATE TABLE.

CREATE TABLE <table name> (
<column name> <data type> [<default value>] [<column constraint>],
<column name> <data type> [<default value>] [<column constraint>],
…
…
[<table constraint1>],
[<table constraint2>],
…

);

The basic syntax is:

7 8

9 10

11 12

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

Example of Creating Tables
Create tables for the following relations:

Would give the following relations:

CREATE TABLE students (
studentID INTEGER,
title VARCHAR(4),
name VARCHAR(20),
city VARCHAR(20)
);

Students(studentID, title, name, city)
Courses(courseID, courseName, startDate, endDate)

CREATE TABLE courses (
courseID CHAR(4),
courseName VARCHAR(20),
startDate DATE,
endDate DATE
);

Table name: students
Attributes: studentID, title, name, city

Table name: courses
Attributes: courseID, courseName, startDate, endDate

Default Values
• When a new row is created using INSERT,

any columns without a specified value are
assigned the default value.

• Unless otherwise specified, the default value
is NULL.

• We can specify a default value for a column
by adding DEFAULT <value expression> to
the create table statement.

CREATE TABLE students (
studentID INTEGER,
title VARCHAR(4),
name VARCHAR(20),
city VARCHAR(20) DEFAULT “Salford”
);

Constraints
• A DBMS can do much more than just store and

access data.

• It can also enforce constraints on what data are
allowed in the database.

• The DBMS enforces constraints by not allowing any
data which violates the constraints to be added to
the database.

• Any INSERT, UPDATE or DELETE that would result in
a constraint violation is rejected without changing
the database.

Column Constraints
• There are many types of constraints.
• Today we will focus mainly on just one type.
• A column constraint applies to one particular column

of a relation (table).
• Recall that the basic syntax of CREATE TABLE is:

CREATE TABLE <table name> (
<column name> <data type> [<default value>] [<column constraint>],
<column name> <data type> [<default value>] [<column constraint>],
…
…
[<table constraint1>],
[<table constraint2>],
…

);

NOT NULL

• Prohibits NULL values for a particular
column.

• E.g., suppose that a student must
have a name.

CREATE TABLE students (
studentID INTEGER,
title VARCHAR(4),
name VARCHAR(20) NOT NULL,
city VARCHAR(20) DEFAULT “Salford”
);

UNIQUE
• Forces distinct column values.
• E.g., every employee has a unique

National Insurance (NI) number.

• UNIQUE is only applied to non-NULL
values.

CREATE TABLE employee (
employeeID INTEGER,
niNumber CHAR(11) UNIQUE,
name VARCHAR(20),
age INTEGER
);

13 14

15 16

17 18

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

Declaring a Primary Key

• Recall that a primary key uniquely
identifies a tuple (row) in the table.

• No values of the primary key may be
NULL, so we do not need the NOT NULL
constraint for employeeID.

CREATE TABLE employee (
employeeID INTEGER PRIMARY KEY,
niNumber CHAR(11) UNIQUE,
name VARCHAR(20),
age INTEGER
);

Comparison

PRIMARY KEY UNIQUE

There is, at most, one
primary key for each

table.

No limit on the number
of columns that are

declared to be unique.

No values of the primary
key may be NULL.

Allows NULL values.

Declaring a Foreign Key
Suppose that we want all the values of course in the

students table either to reference a courseID from
the courses table or to be NULL.

CREATE TABLE students (
studentID INTEGER PRIMARY KEY,
title VARCHAR(4),
name VARCHAR(20),
city VARCHAR(20),
course CHAR(4) REFERENCES courses(courseID)
);

CREATE TABLE courses (
courseID CHAR(4) PRIMARY KEY,
courseName VARCHAR(20),
startDate DATE,
endDate DATE
);

Naming Constraints

Why bother?

• When you attempt an INSERT, UPDATE or
DELETE that violates a constraint, SQL rejects
the operation and issues an error message.
Many DBMSs include the name of the violated
constraint in the error message.

• We can delete constraints by name.

CONSTRAINT <constraint name> <constraint>

Naming Constraints

CREATE TABLE students (
studID INTEGER CONSTRAINT student_pk PRIMARY KEY,
title VARCHAR(4),
name VARCHAR(20) CONSTRAINT name_not_null NOT NULL,
city VARCHAR(20) CONSTRAINT city_default DEFAULT “Salford”,
course CHAR(4) CONSTRAINT student_fk REFERENCES courses(couresID)

);

CREATE TABLE courses (
coursesID CHAR(4) CONSTRAINT course_pk PRIMARY KEY,
courseName VARCHAR(20),
startDate DATE,
endDate DATE

);

This slide shows the constrains that we have already
studied, but with names added.

Consider again the example of students and courses. Table Constraints

• So far we have focused on column
constraints.

• However, we need to study table
constraints briefly now.

• Otherwise you will not be able to
implement composite primary keys.

• We study composite keys later in this
module.

19 20

21 22

23 24

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

Creating Table Constraints in SQL
Recall that the basic syntax of CREATE TABLE is

CREATE TABLE <table name> (
<column name> <data type> [<default value>] [<column constraint>],
<column name> <data type> [<default value>] [<column constraint>],
…
…

[<table constraint1>],
[<table constraint2>],
…

);

Table Constraints and Composite Primary Keys

• An example of a composite primary key is:
supply(partID, supplierID)

• How can you create a composite primary key
in SQL?

CREATE TABLE supply (
partID INTEGER,
supplierID INTEGER,
PRIMARY KEY (partID , supplierID)

);

You cannot create a composite primary key by simply
adding the PRIMARY KEY constraint to more than one
column in the table because SQL will think you are
trying to create multiple primary keys, which is not
allowed.

Exercise
Write SQL statements that create tables for the following

relations.

• team(teamID, name)

• member(memberID, niNumber, address, teamID)

Your SQL statements should impose the following constraints.

• Every team must have a name.

• The attribute teamID in the member relation is a foreign key
to teamID in the team relation.

• The default value of a member’s address is Salford.

• National Insurance numbers are unique.

Solution to Exercise

CREATE TABLE team(

teamID CHAR(4) CONSTRAINT team_pk PRIMARY KEY,

name VARCHAR(20) CONSTRAINT mem_name_not_null NOT NULL

);

CREATE TABLE member(

memberID CHAR(4) CONSTRAINT member_pk PRIMARY KEY,

niNo CHAR(11) CONSTRAINT ni_no_unique UNIQUE,

address VARCHAR(40) CONSTRAINT address_default DEFAULT “Salford”,

teamID CHAR(4) CONSTRAINT team_fk REFERENCES team(teamID)

);

Content

• SQL Data Types

• Creating a table from scratch

–default values

–constraints

• Adding columns to tables

• Destroying tables

• Summary and Reading

Altering Tables in SQL
Tables can be modified in SQL using ALTER TABLE.

ALTER TABLE <table name>
ADD <column name> <data type>;

The syntax is:

Table: students
Attributes: studentID, title, name, city, course

EXAMPLE: Modify students table to have a course column.

ALTER TABLE students
ADD course CHAR(4);

Table: students
Attributes: studentID, title, name, city

25 26

27 28

29 30

Creating, Altering and Destroying Tables Using SQL

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 6

Destroying Tables in SQL
Tables can be destroyed (removed from the
database) in SQL using the DROP TABLE
statement.

Syntax is: DROP TABLE <table name>;

E.g., destroy the students and courses tables
and their contents.

DROP TABLE students;

DROP TABLE courses;

Summary

• Create tables using CREATE TABLE

• Modify tables using ALTER TABLE

• Destroy tables using DROP TABLE

Further Reading
Sections of 7.3.2, 7.3.3 and 7.3.4 of (Connolly &

Begg, 2014)

or

Section 3.3.1 of (Connolly & Begg, 2004)

or

Sections 9.1 – 9.3 of (Donahoo & Speegle, 2005)

or

Section 3.2 of (Silberschatz et al., 2019).

The references are on the last page of the exercise
booklet.

31 32

33

Conceptual Modelling

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

1

Databases

Conceptual Modelling

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.
2

Aim of Lecture

• Outline the steps involved in designing a
database.

• Explain the 1st phase: Conceptual Modelling.

• Study a particular conceptual model,
– the Entity Relationship (ER) model.

• By the end you should be able to:
– Explain what conceptual design is, and how it is

used;
– Represent a real-world situation as an ER Model;
– Understand an ER model constructed by someone

else.

3

Contents
• The role of conceptual modelling

• Why bother with ER modelling?

• Contents of an ER model

–ER diagrams

–Descriptions

• Examples

• Summary
4

Role of Conceptual Modelling
Within the Design Process

Real-World Organisation/
Problem e.g., library

Logical Data Model

Conceptual Data
Model

Physical Model
(via DBMS)

Identify important concepts
and data needs.

Create a conceptual model.

Convert model to structures
required by database (relational,
object-oriented, etc.)

Implement using a DBMS:
create tables, add data,
constraints, etc.

5

In What Sense is it Modelling?
• In general there is not a single right answer.

• There will usually be many different ways of
modelling a given real-world situation, some
better than others.

• Iterative process

– typically you come up with an idea for a model, then
discover that it doesn’t quite work, so you have to go
back and refine it.

6

– Uses human terms, not computer terms.
Member borrows Book
Tables, Foreign Keys…

The Conceptual Data Model

– Implementation independent.
– Useful for discussion with clients / colleagues.

• One form is the Entity-Relationship model.

• Abstract view of situation
– Identifies important elements and

relationships between them.
Library: Books, Members, Carpets

1 2

3 4

5 6

Conceptual Modelling

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

7

Contents

• The role of conceptual modelling
• Why bother with ER modelling?
• Contents of an ER model

–ER diagrams
–Descriptions

• Examples
• Summary

8

Why Bother with ER Modelling?
• The ER model is simpler and easier to

understand than database tables.
– It makes your life easier.
– Helps discussions with customers and fellow-

workers.

• It allows you to work on one task at a time.
1. Modelling the real-world situation.
2. Designing the DB tables.

• Most large organisations will require it.

9

Contents

• The role of conceptual modelling
• Why bother with ER modelling?
• Contents of an ER model

–ER diagrams
–Descriptions

• Examples
• Summary

10

Contents of an E-R Model
The E-R Model consists of four items:

1. An E-R Diagram - a graphical representation of the

entities and the relationships between them;

2. A formal description of each entity in terms of its

attributes and primary key;

3. Descriptions of the meaning of relationships;

4. Descriptions of any constraints on the system and of

any assumptions made.

11

How do you obtain an E-R Model?

Given a specification, you need to identify the:

– entities - ‘things’ with physical or conceptual

existence - usually nouns;

– relationships between entities - usually verbs;

– attributes of each entity;

– any constraints or assumptions.

12

Identifying Elements in a Specification

Consider the following specification for a Company database:

Departments control many projects and each department has
many employees. Each employee works on only one project at
a time. A project’s start date must be before the project’s
target completion date. Each employee has an NI number, name
and address.

Entities: departments, projects, employees

Relationships: control between departments and projects
has between departments and employees
works on between employees and projects

Attributes: Start date, completion date for project.
NI number, name, address for employee.

Constraints: A project’s start date must be before the project’s
target completion date.

•Date is a noun.

•But it does not
have any
relationships
and it does not
have any
attributes of it
own.

•So it’s simplest
to make start
date and end
date attributes
of project.

7 8

9 10

11 12

Conceptual Modelling

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

13

The E-R Diagram
• This is a graphical representation of the entities

and the relationships between them.

• Many different notations for ER diagrams.

• One is the “Crow's Foot” notation.

• Many organisations still use the Crow's Foot
notation, especially for legacy systems which
are vital to these organisations.

Supervisor Student
supervises

14

The Functionality of a Relationship

Each supervisor can supervise many students,

but each student has only one supervisor.

Supervisor Student
supervises

Functionality answers two questions:
• Can the supervisor have more than one student?

Answer: Yes
• Can the student have more than one supervisor?

Answer: No
So we are interested in the maximum number of each

entity involved: is it 1 or more than 1?

15

The Membership Class of a Relationship
A supervisor does not have to supervise any students.

A student has to have a supervisor.

The membership class answers two questions:
• Must the supervisor have at least one student?

Answer: No
• Must the student have at least one supervisor?

Answer: Yes

So we are interested in the minimum number of each entity
involved: is it 0 or 1?

Supervisor Student
supervises

Supervisor’s participation in
supervision is optional.

Student’s participation in
supervision is mandatory.

16

Combining Functionality and
Membership Class

Supervisor Student
supervises

A student must have one supervisor,
and can’t have more than one supervisor.

A supervisor may supervise no students,
or may supervise many students.

17

Contents

• The role of conceptual modelling
• Why bother with ER modelling?
• Contents of an ER model

–ER diagrams
– Descriptions

• Examples
• Summary

18

Descriptions of Entities

• Properties of entities are called attributes.

• One or more attributes are chosen as the primary key.

• The primary key must be unique,

– i.e., no two instances can have the same value for the primary key.

• Entity description: name, primary key, other attributes.

• Examples of entity descriptions:

– Student(studentId, firstName, surname)

– Driver(driverID, firstName, surname, address, #points)

– Exam(moduleID, studentID, grade)

13 14

15 16

17 18

Conceptual Modelling

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

19

Description of Entities (continued)

Supervisor(StaffID, Name, JobTitle, Address)

Student(StudentID, Name, Address, StaffId*)

Attributes of an entity do NOT include foreign keys.

Supervisor Student
supervises

Revision note: foreign keys are not included until
a later step in the design process for a relational
database, namely the logical or relational modelling step.

20

Description of Relationships

Supervisor Student
supervises

Functionality: Relationship is one to many, written [1:M]

Membership class: optional to mandatory, written [o:m]

Description of relationship is therefore:

Supervises: Supervisor supervises student [1:M] [o:m]

21

Descriptions of Constraints / Assumptions

• Summary of constraints found in the model

description.

• Examples:

– The number of points on a driver’s license must

be less than 11.

– Driver title must be Mr, Mrs or Ms.

22

Example of a [1:1] [o:o] Relationship

• A professor cannot head more than one department.

• A professor does not have to head a department.

• A department cannot have more than one head.

• A department does not have to have a professor as its
head.

• Description of relationship is therefore:

Professor Department
heads

Professor heads Department [1:1] [o:o]

23

Example of a [1:1] [m:o] Relationship

• A vice chancellor must govern exactly one
university.

• A university cannot have more than one vice
chancellor, and may have not have one.

• Description of relationship is therefore:

Vice Chancellor University
governs

Vice Chancellor governs university [1:1] [m:o]

24

Example of a [M:M] [m:m] Relationship

• An employee learns one or more skills.

• A skill is learnt by one or more employees.

• Description of relationship is therefore:

Employee Skill
learns

employee learns skill [M:M] [m:m]

19 20

21 22

23 24

Conceptual Modelling

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

25

Another Example of a
[M:M] [m:m] Relationship

• A treatment includes one or more drugs.

• A drug is included in one or more treatments.

• Description of relationship is therefore:

Treatment Drug
includes

treatment includes drug [M:M] [m:m]

26

More Than Two Entities

• A course has one or more students studying it.
• A student studies just one course.
• A student lives in just one hostel.
• A hostel has one or more students living it in.
• Description of relationship is therefore:

course
studies

student hostel
lives in

student studies course [M:1] [m:m]
student lives in hostel [M:1] [m:m]

27

Summary
• A conceptual data model:

– identifies the important elements and the relationships
between them;

– is independent of the type of logical model / database.

• One form is the Entity-Relationship Model which:

– contains entities, attributes, relationships and
constraints;

– can be represented graphically using the crow’s foot
notation.

28

Reference
The "crow's foot“ notation is denoted in:

• Appendix C.2 of (Connolly & Begg,
2014);

• Appendix A.2 of (Connolly & Begg, 2004)

• (Barker, 1989)

The list of references is on the final page of
the exercise booklet.

25 26

27 28

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

1

Databases

Transforming an ER Model
to a Logical (Relational) Model

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.
2

Logical Data Model

Steps in the Design Process

Real-World Organisation

Conceptual Data
Model

Physical Model on disc

• Models the real world situation.

• Contains entities, properties,
relationships and constraints.

• Is independent of any kind of
database.

• Models the real world situation
using structures appropriate to
the type of database.

• For a relational database, these
are tables, foreign keys,
validation rules, …

owner property
owns

3

Aim of the Lecture
• Aim of lecture:

–Explain some terminology and properties
of the relational model.

–Show you how to transform an ER model
into a relational model.

• By the end you should be able to:
–Transform an ER model into a relational

model (which you can then, e.g., enter
into Access).

Questions
• What are NULL values?

• What are the precise definitions for the different types of

keys?

• How do we transform an ER Model to a Logical (Relational)

Model?

• How do we transform a relationship?

• How many types of relationship are there?

• Why do we solve the transformation of each of relationship,

rather than memorise all of them?

• Summary
4

5

NULLs
• Relational databases provide a special value, called

NULL, which indicates that a value of an attribute
is unknown.

• Note that a database value of NULL is not the
same as a space or zero.

• Unless explicitly forbidden, NULL is a valid value
for any data type.

• Try to avoid NULLs if possible because they:

– waste space;

– complicate queries.

For some complex queries, the result is actually
undefined when the data involves nulls, so different
DBMSs might give different answers, which is clearly
unsatisfactory.

6

Candidate and Primary Keys

• Candidate Key is an attribute, or a set of attributes,
that is:
– a unique identifier for rows in the table;
– irreducible.

• A candidate key is irreducible if every attribute in the key
is required to uniquely identify every row in the relation.

• A key is reducible if there is a subset of this set that
uniquely identifies every row in the table.

• Primary Key is the candidate key chosen to be the
identifier.

NI may not be
a candidate
key as
overseas
students may
not have one.

student# NI number name Course

9713910 WF 63543F Fraser Accountancy

8473652 WE 85736F Fraser Agriculture

8475661 WG 85764P Pargetter Land Economy

1 2

3 4

5 6

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

7

Sometimes many attributes are
required to form the primary key

Suppose that modules may have several courseworks and several exams.

To uniquely identify a row in the table, we need to know:

Which student?
Which module?
Exam or coursework?

student# module# assessment_type mark

000123 CRN903 Coursework 50%

000123 CRN912 Coursework 60%

000123 CRN903 Exam 50%

000126 CRN903 Coursework 40%

000126 CRN912 Coursework 50%

8

Atomic and Composite Keys

• An atomic key comprises a single attribute.

• A composite key comprises more than one.

• Primary keys are denoted using
underlining.

• All the attributes of a primary key are
underlined.

9

Transforming an ER Model into
a Relational Model

• Each entity transforms into a table,

– with same attributes and primary key.

• Each relationship transforms into either:

– foreign key in an existing table;

– OR a new table, linked by foreign keys.

• Constraints transform into:

– attribute constraints or

– table constraints.
10

Transforming an ER Model into Tables

owner(owner#, name, address)

property(property#, type, address)

owner# name address

Ow001 Oliver Stirling 23 Princes Street
Ow003 Crawford 17 Borchester Green
Ow098 Woolley 14 High Street

owner

property# type address

Pr8376 Farm Grange Farm, Ambridge
Pr9485 Pub The Bull, Ambridge
Pr8475 Detached House Lower Loxley, Ambridge

property

Each entity turns into a
table, with the same
attributes and primary key.

owner property
owns

11

Representing a Relationship
using a Foreign Key

owner# name address

Ow001 Oliver Stirling 23 Princes Street
Ow003 Crawford 17 Borchester Green
Ow098 Woolley 14 High Street

owner

property# type address

Pr8376 Farm Grange Farm, Ambridge
Pr9485 Pub The Bull, Ambridge
Pr8475 Detached House Lower Loxley, Ambridge

property

Ow003
Ow003
0w001

owner#*

owner property
owns

Foreign keys are denoted using an asterisk. 12

Principles of Choosing Foreign Keys

• Choice of foreign key depends on
properties of the relationship.

–Foreign key should not have multiple values.

– Foreign key should not have null values.

–Keep it simple.

How do we choose a foreign key for a relationship
such as:

owner property
owns

7 8

9 10

11 12

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

13

Right and Wrong Choice of Foreign Keys

owner# name address

Ow001 Oliver Stirling 23 Princes Street
Ow003 Crawford 17 BorchesterGreen
Ow098 Woolley 14 High Street

owner

property# type address

Pr8376 Farm Grange Farm, Ambridge
Pr9485 Pub The Bull, Ambridge
Pr8475 Detached House Lower Loxley, Ambridge

property

Ow003
Ow003
0w001

owner#*

property#*

Pr8475
Pr8376, Pr9485
NULL

owner property
owns

14

[1:1] [o:m] Relationships

prof department
heads

p# name
p1 Fred
p2 Bill
p3 Jim

professors
dep# name
d1 Art
d2 Science

departments

dep#*
d1
NULL
d2

p#*
p1
p3

Suppose that a department has to have a professor at
its head, but a professor does not have to head a
department.

15

[1:1] [o:o] Relationships

prof department
heads

p# name
p1 Fred
p2 Bill

professors
dep# name
d1 Art
d2 Science

departments
dep#*
d1
NULL

p#*
p1
NULL

Now suppose that a department does not have to have a
professor at its head.

Again, a professor does not have to head a department.

16

[1:1] [o:o] Relationships (continued)

p# name
p1 Fred
p2 Bill
p3 Jim

professors

dep# name
d1 Art
d2 Science
d3 Cooking

departments

heads
p#* dep#*
p1 d1
p3 d2

Primary key for the
new table can be
EITHER p# OR dep#
but NOT both.

prof department
heads

17

[1:1] [m:m] Relationships

dep#*
d1
d2

p# name
p1 Fred
p3 Jim

professors

dep# name
d1 Art
d2 Science

departments

p#*
p1
p3

p# name
p1 Fred
p3 Jim

professors

dep# name
d1 Art
d2 Science

departments

prof department
heads

Foreign key can go in
either.

Not normally both.
If you know what kind of
queries are likely to occur,
then that can provide a
reason for the choice of
foreign key, namely a slight
difference in efficiency.

18

Exercise One

A person must have exactly one birth certificate.

Each birth certificate is for just for one person.

(a) Draw the ER diagram.

(b) Convert the ER diagram to a logical (relational) model.

You will need to create some attribute names and data to
illustrate your answer.

13 14

15 16

17 18

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

19

Solution to Exercise One
A person must have exactly one birth certificate.
Each birth certificate is for just for one person.

An alternative answer is

person certificate

certificate person
cert# person# name cert#*
C123 P001 Alice C123
C124 P002 Hamza C887
C125 P003 Alisha C200
⋮ ⋮ ⋮ ⋮

The foreign
key may be
included in
either table.

certificate person
cert# person#* person# name
C123 P001 P001 Alice
C124 P546 P002 Hamza
C125 P233 P003 Alisha
⋮ ⋮ ⋮ ⋮

20

Exercise Two
Each birth certificate is for just for one person.

A person may have a birth certificate, or may have lost it!

(a) Draw the ER diagram.

(b) Convert the ER diagram to a logical (relational) model.

You will need to create some attribute names and data to
illustrate your answer.

21

Solution to Exercise Two

certificate person
cert# person#* person# name
C123 P001 P001 Alice
C124 P546 P002 Hamza
C125 P233 P003 Alisha
⋮ ⋮ ⋮ ⋮

person certificate

22

[M:1] [m:o] Relationships

Each junior is in exactly one team, so...

j# name
j1 Fred
j2 Bill
j3 Jim

juniors
t# name
T1 A&E
T2 Radiology

teams

t#*
T1
T1
T1

j#*
j1, j2,j3
NULL

junior team
is in

Suppose junior doctors at a hospital work in a team.

A team can include zero, one or many junior doctors.

23

[M:1] [o:o] Relationships

t# name
T1 A&E
T2 Radiology

teams
j# name
j1 Fred
j2 Bill
j3 Jim

juniors

junior team
is in

j#* t#*

j2 T1
j3 T1

t#*
NULL

j#*
j2, j3
NULL

Is in

Now suppose that some juniors may not work in a team.

E.g., suppose that
Fred does not work
in a team.

24

Exercise 3
Draw the ER diagram in each case, then

translate to tables.

A)
A person must own one or more cars.
A car must have exactly one owner.

B)
A person may own none, one or more cars.
A car must have exactly one owner.

C)
A person may own none, one or more cars.
A car may or may not have an owner.

19 20

21 22

23 24

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

25

Solution to Exercise 3

person(person#, name, …) car(car#, …, person#*)

person(person#, name, …) car(car#,…) owns(person#, car#)

person carownsC)

person carownsA)

person carownsB)

person(person#, name, …) car(car#, …, person#*)

26

Many to Many Relationships

treatment drugincludes

drug# name
D1 Aspirin
D2 Gin

drug

tr#*
T1, T2, T3
T3

treatment
tr# name
T1 Headache cure
T2 Toothache cure
T3 Hair of the Dog

drug#*
D1
D1
D1, D2

27

Many to Many Relationships

treatment drug
includes

drug# name
D1 Aspirin
D2 Gin

drug

T1 D1
T2 D1
T3 D2
T3 D1

treatment
tr# name
T1 Headache cure
T2 Toothache cure
T3 Hair of the Dog

includes
tr#* drug#* Primary

key for the
new table
must be a
composite. 28

Transforming Complex ER Diagrams

course
studies

student hostel
lives in

student(student#, name) ,course#*) , hostel#*)

student(student#, name, course#*)

student(student#, name, hostel#*)

course(course#, …)
hostel(hostel#, …)

29

Too Many
Transformations

to Memorise

• There are 24 = 16 kinds of
relationship.

• So, there are 16 possible
transformations.

• Too many to learn by rote.

• It is easier to solve them.

[1:1] [m:m]
[1:1] [m:o]
[1:1] [o:m]
[1:1] [o:o]
[1:M] [m:m]
[1:M] [m:o]
[1:M] [o:m]
[1:M] [o:o]
[M:1] [m:m]
[M:1] [m:o]
[M:1] [o:m]
[M:1] [o:o]
[M:M] [m:m]
[M:M] [m:o]
[M:M] [o:m]
[M:M] [o:o]

30

No need to memorise 16 transformations

• All you need are the three basic principles:

1.Foreign key should not have null values.

2.Foreign key should not have multiple values.

3.Keep it simple.

• All many to many relationships are transformed
in the same way.

25 26

27 28

29 30

Transforming an ER Model to a Logical (Relational) Model

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 6

31

Summary: ER → Relational Model

• Each entity becomes a table,

–with the same attributes and primary key.

• Each relationship is represented by a
foreign key or a new table.

–Transform the relationships one at a time, in
any order.

–Use the procedure on the next slide.

• A table may include many foreign keys.
32

How to Represent a Relationship
Using a Foreign Key

Can it be null or
multiple-valued? Do it!

Can it be null or
multiple-valued?

Try including the primary key of table A as a foreign key in table B.

Try including the primary key of table B as a foreign key in table A.

Do it!

Create a new table containing the primary keys of A and B.

Choose a primary key for the new table.

No

No

Yes

Yes

31 32

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

1

Databases

Normalisation
Dr Bryant

Not to be reused without permission. © University of Salford, 2023. 2

Contents
• Why normalisation is useful

• Functional Dependency

• First normal form (1NF)

– Repeating Groups

– Information redundancy

– Types of anomaly

• Full and Partial Functional Dependency

• Second normal form (2NF)

• Transitive Dependency

• Third normal form (3NF)

• Relationship between 1NF, 2NF and 3NF

• Summary and Reading

3

Designing a Database

• We have been studying how to design a

database.

• We began with conceptual modelling.

• We focused on one particular form - the Entity-

Relationship Model.

• In the previous lecture, we saw how we can

transform an ER Model to a Logical (Relational)

Model.
4

Identifying and Fixing Deign Faults

• In this lecture, you will learn how to:

1. identify faults in the table design and

2. how to restructure your tables to remove the

faults.

• In other words, you are going to learn how

ensure that your tables are “normalised”.

5

Identifying and Fixing Deign Faults

• Usually a good ER model will lead to a well-
designed database. You can confirm this by
checking it is “normalised”.

• The situation you are modelling may change. As
you change your database, you need to ensure
it remains “normalised”.

• You may inherit a messy database from
someone else, and be asked to tidy it. When
you tidy it, you need to ensure it ends up
“normalised”.

6

Where does Normalisation Fit in?

Real-World Organisation /
Problem

Logical Data Model

Conceptual Data Model

Physical Model (via DBMS)

BookMember
borrows

Member BookBorrows
MemId … BookId …MemId BookId

1 2

3 4

5 6

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

7

Normalisation
• Normalisation is a process of evaluating and correcting

the structures of tables to minimise data redundancies
and so reduce the chance of data anomalies.

• Normalisation works through a series of stages.

• For most business databases, 3NF is as high as you
need to go.

• To understand normalisation, you first need to
understand the notion of Functional Dependency.

First
Normal
Form
(1NF)

Second
Normal
Form
(2NF)

Third
Normal
Form
(3NF)

8

• A  B

• A functionally determines B.

• B is functionally dependent on A.

You can’t have two rows with the same value of A
and different values of B.

Functional Dependency

• StudentID  StudentSurname
u0006610  Smith

• StudentSurname  StudentID
Smith  u0006610
Smith  u0107554
Smith  u9801718

All these statements
are equivalent.

In a valid table,
the primary key
determines all
the non-key
attributes.

X

X
X

X

9

Contents
• Why normalisation is useful

• Functional Dependency

• First normal form (1NF)
– Repeating Groups

– Information redundancy

– Types of anomaly

• Full and Partial Functional Dependency

• Second normal form (2NF)

• Transitive Dependency

• Third normal form (3NF)

• Relationship between 1NF, 2NF and 3NF

• Summary and Reading
10

Repeating Group

• A repeating group is an attribute, or
group of attributes, within a table that
occurs with multiple values for a
single occurrence of the nominated
key attribute(s) for that table.

11

Repeating Groups

• Both PhoneNumber and DepartmentID
are examples of a repeating group.

Department DeptName PhoneNumber
D001 Computing X2745,x2746
D002 Art X2790
D003 Midwifery x2792

StaffID Name DepartmentID*

S1 Smith Computing, Art

S2 Brown Computing, Business
12

First Normal Form (1NF)
A table is in first normal form if:

• There are no repeating groups in the table.

– In other words, each row/column intersection contains
one and only one value, not a set of values.

• All non-key attributes are determined by the key.

• In this context, the term "key" refers to the
attribute(s) that uniquely identify each row within
the unnormalised table.

7 8

9 10

11 12

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

13

Converting to First Normal Form

S1 Smith
S2 Brown

S1 Computing
S1 Art
S2 Computing
S2 Business

S1 Smith Computing, Art
S2 Brown Computing, Business

ID Name Department

ID Name ID* Department

Result of normalisation

Bad design

14

A table with more than one repeating group.

S1 Smith Computing, Art Music, Gaelic
S2 Brown Computing, Business Embroidery

ID Name Department Interests

S1 Smith
S2 Brown

ID Name

S1 Music
S1 Gaelic
S2 Embroidery

ID* Interests
S1 Computing
S1 Art
S2 Computing
S2 Business

ID* Department

Result of normalisation

Bad design Bad design

No connection between department and interests.

So we deal with the two repeating groups separately.

15

Why are there two repeating groups?

• The attribute Department has multiple values
for a value of the key ID and so is a repeating
group.

• The attribute Interests also has multiple values
for a value of the key ID and so is another
repeating group.

• The attributes Department and Interests are not
related to each other and so they are not part of
the same repeating group.

16

How Repeating Groups Might Arise

1 S1 P1 Screw 6p 3 56p
P2 Nut 7p 4
P3 Bolt 10p 1

2 S2 P1 Screw 6p 3 58p
P3 Bolt 10p 4

OrderNo SuppNo PartNo Descr UnitPrice Quantity TotalCost

OrderNo SuppNo PartNo Descr UnitPrice Quantity TotalCost

1 S1 P1 Screw 6p 3 18p
2 S1 P2 Nut 7p 4 28p
3 S1 P3 Bolt 10p 1 10p
4 S2 P1 Screw 6p 3 18p
5 S2 P3 Bolt 10p 4 40p

Initially each
order can
only contain
one part
type.

Now each
order can
contain
many part
types.

Suppose the rules change, and we are allowed to ask for
different types of item all in the one order.

N.B. the design of this table is flawed and needs to be fixed!

17

The Resulting Repeating Group

• PartNo, Descr, UnitPrice and Quantity are
a repeating group in the table in the
bottom half of the previous slide because
they have multiple values for a value of
the key OrderNo.

• PartNo, Descr, UnitPrice and Quantity
belong to the same repeating group
because they are related to each other.

18

Removing Repeating Groups

PartNo Descr UnitPrice Quantity OrderNo SuppNo TotalCost

OrderNo SuppNo PartNo Descr UnitPrice Quantity TotalCost

1 S1 P1 Screw 6p 3 56p
P2 Nut 7p 4
P3 Bolt 10p 1

2 S2 P1 Screw 6p 3 58p
P3 Bolt 10p 4

OrderNo*

1 P1 Screw 6p 3
1 P2 Nut 7p 4
1 P3 Bolt 10p 1
2 P1 Screw 6p 3
2 P3 Bolt 10p 4

1 S1 56p
2 S2 58p

13 14

15 16

17 18

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

19

Example of Data Redundancy
StaffId Name Staff Address Branch Branch Address

Data Redundancy – same information repeated many
times.

This is a waste of space and time.

It also introduces the potential for anomalies.

An anomaly is a situation where inconsistent data is
introduced into a table, or data is lost unintentionally.

S1 Fred Bloggs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

20

Insertion Anomalies

S1 Fred Bloggs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

S6 Ed Grundy Keeper’s Cottage B2 121 King St

Can’t add a new branch until it has some staff.

B3 26 Salford Rd

StaffId Name Staff Address Branch Branch Address

Potential for inconsistent data (branch addresses).

21

Modification Anomaly

• If a branch address changes, you have to change it in several places.

• This could introduce inconsistencies if you make a mistake.

• E.g., suppose branch B1 moves to 20 Union Street and so tuples S1
and S2 are updated but tuple S3 is not updated.

S1 Fred Bloogs 23 Acacia Gardens B1 20 Union Street
S2 Bill Sykes 17 Mafeking Terrace B1 20 Union Street
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

S1 Fred Bloogs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

22

Deletion Anomaly

If all the staff at B2 leave, then you lose the address of B2.

An anomaly is a situation where inconsistent data is
introduced into a table, or data is lost unintentionally.

S1 Fred Bloogs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

S1 Fred Bloogs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd

23

A Better Design

S1 Fred Bloggs 23 Acacia Gardens B1
S2 Bill Sykes 17 Mafeking Terrace B1
S3 George Shaw 42 Privet Drive B1
S4 John Doe 5 Mornington Crescent B2
S5 Tom Atkins 10 Rillington Place B2

B1 42 Victoria Rd
B2 112 King St

StaffId Name Staff Address Branch#* Branch# Address

Now no redundancy, so no potential for anomalies.

StaffId Name Staff Address Branch# Branch Address
S1 Fred Bloogs 23 Acacia Gardens B1 42 Victoria Rd
S2 Bill Sykes 17 Mafeking Terrace B1 42 Victoria Rd
S3 George Shaw 42 Privet Drive B1 42 Victoria Rd
S4 John Doe 5 Mornington Crescent B2 112 King St
S5 Tom Atkins 10 Rillington Place B2 112 King St

Split into two tables.

24

New Design Avoids Anomalies

S1 Fred Bloggs 23 Acacia Gardens B1
S2 Bill Sykes 17 Mafeking Terrace B1
S3 George Shaw 42 Privet Drive B1
S4 John Doe 5 Mornington Crescent B2
S5 Tom Atkins 10 Rillington Place B2

B1 42 Victoria Rd
B2 112 King St

StaffId Name Staff Address Branch#* Branch# Address

Suppose that:

• Someone called Ed Grundy starts work at branch B1.

• A new branch, B3, is opened on 26 Salford Rd.

• Branch B1 moves to 20 Union Street.

• John and Tom leave branch B2.

B3 26 Salford Rd

20 Union St

S6 Ed Grundy Keeper’s Cottage B1

19 20

21 22

23 24

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

25

Contents
• Why normalisation is useful

• Functional Dependency

• First normal form (1NF)
– Repeating Groups

– Information redundancy

– Types of anomaly

• Full and Partial Functional Dependency

• Second normal form (2NF)

• Transitive Dependency

• Third normal form (3NF)

• Relationship between 1NF, 2NF and 3NF

• Summary and Reading 26

Example

1 P1 Screw 3 6p 18p
1 P2 Nut 4 7p 28p
1 P3 Bolt 1 10p 10p

2 P1 Screw 3 6p 18p
2 P3 Bolt 4 10p 40p

OrderNo PartNo Descr Quantity UnitPrice Cost

PurchaseItem

Quantity and Cost depend on both OrderNo and PartNo.

Suggests that a Part table is embedded in the table.

Descr and UnitPrice only depend on PartNo.

27

• D is fully functionally dependent on A, B, C if

A, B, C  D but A, B  D B, C  D …

i.e., all the attributes on the LHS are needed
to determine the RHS.

• Partial dependency refers to attributes which are only
dependent on part of the composite primary key.

Full and Partial Functional Dependency

• Attributes may depend on a set of other attributes.

StudentId, ModuleName  ExamMark

OrderNo, PartNo  Quantity

X X

28

Full and Partial Functional Dependencies

• Quantity is fully functionally dependent on both OrderNo and PartNo.

• Description is NOT fully functionally dependent on both OrderNo and
PartNo, because it is entirely determined by PartNo.

– E.g., Part P3 is a Bolt, regardless of which order it’s in.

• Description is partially dependent on the primary key.

OrderNo PartNo Description Quantity UnitPrice Cost

1 P1 Screw 3 6p 18p

1 P2 Nut 4 7p 28p

1 P3 Bolt 1 10p 10p

2 P1 Screw 3 6p 18p

2 P3 Bolt 4 10p 40p

OrderNo PartNo Descr Quantity UnitPrice Cost

29

Removing Partial Dependencies

1 P1 Screw 3 6p 18p
1 P2 Nut 4 7p 28p
1 P3 Bolt 1 10p 10p

2 P1 Screw 3 6p 18p
2 P3 Bolt 4 10p 40p

OrderNo PartNo Descr Quantity UnitPrice Cost

PartNo Descr Cost
OrderNo PartNo* Quantity Cost

1 P1 3 18p
1 P2 4 28p
1 P3 1 10p
2 P1 3 18p
2 P3 4 40p

P1 Screw 6p
P2 Nut 7p
P3 Bolt 10p

30

Second Normal Form (2NF)
A table is in second normal form if

• it is in first normal form;

• and there are no partial dependencies,

i.e., every non-key attribute is fully
functionally dependent on the primary key.

Note you can only get partial dependencies if the primary
key is composite.

If it is not composite, then nothing can depend on part of
the primary key, because it does not have parts.

So a (1NF) table is automatically in second normal form if
its primary key is atomic (i.e., has just one attribute).

25 26

27 28

29 30

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 6

31

Contents
• Why normalisation is useful

• Functional Dependency

• First normal form (1NF)
– Repeating Groups

– Information redundancy

– Types of anomaly

• Full and Partial Functional Dependency

• Second normal form (2NF)

• Transitive Dependency

• Third normal form (3NF)

• Relationship between 1NF, 2NF and 3NF

• Summary and Reading 32

Redundancies in the Purchase Order Table

order# supp# suppName suppAdd delDate orderDate totalPrice

O1 S1 Asda King St 2015-02-01 2015-01-28 £50
O2 S1 Asda King St 2015-02-12 2015-02-04 £85
O3 S1 Asda King St 2015-02-14 2015-02-12 £30
O5 S2 Co-op George St 2015-02-05 2015-02-08 £20
O6 S2 Co-op George St 2015-02-07 2015-02-09 £100

po(order#, supp#, suppName, suppAdd, delDate orderDate, totalPrice)

33

Transitive Dependency

• If A  B and B  C, then we can write:
– A  B  C
– OrderNo  SupplierNo  SupplierName

• We say
– “C is transitively dependent on A”.
– “A determines C via B”.

• So for the supplier table we say:
– “Supplier name is transitively dependent on OrderNo.”
– “OrderNo determines SupplierName via SupplierNo.”

A table is in 3rd normal form
if it is in 2nd normal form

and there are no transitive dependencies. 34

Removing Transitive Dependencies

O1 S1 Asda King St 2015-02-01 2015-01-28 £50
O2 S1 Asda King St 2015-02-12 2015-02-04 £85
O3 S1 Asda King St 2015-02-14 2015-02-12 £30
O5 S2 Co-op George St 2015-02-05 2015-02-08 £20
O6 S2 Co-op George St 2015-02-07 2015-02-09 £100

S1 Asda King St
S2 Co-op George St

order# supp# sName sAdd delDate orderDate totalPrice

supp# sName sAdd

O1 S1 2015-02-01 2015-01-28 £50
O2 S1 2015-02-12 2015-02-04 £85
O3 S1 2015-02-14 2015-02-12 £30
O5 S2 2015-02-05 2015-02-08 £20
O6 S2 2015-02-07 2015-02-09 £100

order# supp#* delDate orderDate totalPrice

35

Third Normal Form

A table is in third normal form if:

• it is in second normal form;

• and there are no transitive dependencies,

i.e., if no non-key attribute is transitively
dependent on the primary key.

36

Contents
• Why normalisation is useful

• Functional Dependency

• First normal form (1NF)
– Repeating Groups

– Information redundancy

– Types of anomaly

• Full and Partial Functional Dependency

• Second normal form (2NF)

• Transitive Dependency

• Third normal form (3NF)

• Relationship between 1NF, 2NF and 3NF

• Summary and Reading

31 32

33 34

35 36

Normalisation

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 7

37

Venn Diagram:
Relationship between 1st, 2nd and 3rd NF

1NF: no multi-valued attributes.

2NF: 1NF and no partial
dependencies.

3NF: 2NF and no
transitive dependencies.

38

Summary: Motivation

• UN-normalised DBs cause problems:
– Redundancy/Waste of time and space;
– Anomalies (Insert, Update, Delete).

• Each table should have a single “topic”.
– This will be indicated by the primary key.

• An UN-normalised table:
– tries to combine SEVERAL topics;
– contains inappropriate dependencies.

39

Summary: The Normalisation Process

1. Check for multi-valued attributes.

If you find any, restructure the table to remove them.

The table is now in 1st NF.

2. Check for partial dependencies.

If you find any, restructure the table to remove them.

The table is now in 2nd NF.

3. Check for transitive dependencies.

If you find any, restructure the table to remove them.

The table is now in 3rd NF.

40

Further Reading

Chapter 14 of (Connolly & Begg,
2014);

or

Chapter 8 of (Connolly & Begg, 2004).

The list of references is on the final
page of the exercise booklet.

37 38

39 40

SubQueries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

Databases

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.

SQL Subqueries

Content
• Introduction

• Terminology

• Subqueries after Relational Operators
– Aggregate Functions

• Subqueries after the IN Operator

• Subqueries within INSERT, UPDATE or
DELETE statements

• Summary and Reading

Terminology
• We can embed a SELECT statement within

another SELECT statement.

• As one is inside the other, we distinguish
between the two by referring to them as:

– the inner SELECT statement,

– the outer SELECT statement.

• The entire SQL statement is sometimes
referred to as a nested query.

• An inner select is called a subquery.

Example of a Subquery
SELECT staffNo, name, position

FROM staff

WHERE branchNo =

;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

• Outer SELECT is highlighted in blue.
• Inner SELECT is highlighted in yellow and

is in the dotted box.
• () tell the computer where the subquery is.
• The inner SELECT is executed first.
• The output of the inner query is used as

the input for the outer query.

Some Data Used in this Lecture

branchNo street city postcode

B005 Balloon St Manchester M1 9DD

B007 Green Lane Bolton BL2 5DP

B003 Main St Rochdale OL8 1XY

B004 Old Rd Oldham OL1 3AB

B002 Mersey Sq Stockport SK1 5NX

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S2 Sarah Assistant 1985-12-01 12000 B003

S3 Harry Supervisor 1995-02-09 18000 B003

S4 Sophie Assistant 1992-05-04 9000 B007

S5 Louise Manager 1993-07-04 24000 B003

S6 Laura Assistant 1998-11-07 9000 B005

How the Example Works

SELECT staffNo, name, position

FROM staff

WHERE branchNo =

B003

;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

• The inner SELECT finds the branch number
of the branch with street name “Main St”).

• In other words, it returns a result table
containing a single value B003.

1 2

3 4

5 6

SubQueries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

Result of the Subquery

SELECT staffNo, name, position

FROM staff

WHERE branchNo =

B003 ;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

The outer query returns
staffNo name position

S2 Sarah Assistant

S3 Harry Supervisor

S5 Louise Manager

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S2 Sarah Assistant 1985-12-01 12000 B003

S3 Harry Supervisor 1995-02-09 18000 B003

S4 Sophie Assistant 1992-05-04 9000 B007

S5 Louise Manager 1993-07-04 24000 B003

S6 Laura Assistant 1998-11-07 9000 B005

Subqueries after Relational Operators

• A subquery can be used immediately
following a relational operator in a WHERE
clause or a HAVING clause.

= < > <= >= <>

• The subquery must appear on the right-
hand side of the comparison.

• The subquery must return one value;
otherwise the DBMS will raise an error.

• The value must be of a comparable data
type.

Data Used in Examples
Drivers and the number of penalty points on their licence.

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Recap: Aggregate Functions Example
Calculate the number of drivers, the total number of
points and the average number of points.

driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

SELECT COUNT(driverID), SUM(points), AVG(points)
FROM Drivers;

COUNT(driverID) SUM(points) AVG(points)
5 28 5.6

Subquery with an Aggregate Function
SELECT staffNo, name, position,

salary – 17000 AS salDIF

FROM staff

WHERE salary > 17000 ;

• N.B. cannot write

WHERE salary > AVG(salary)
Aggregate functions cannot be used in a where clause.

• The subquery finds the average salary.

• In other words, it returns a result table
containing a single value £17,000.

(SELECT AVG(salary) FROM Staff)

(SELECT AVG(salary) FROM Staff)

Result of the Subquery

The outer
query
returns

staffNo name position salDif

S1 Tom Assistant 13000.00

S3 Harry Supervisor 1000.00

S5 Louise Manager 7000.00

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S2 Sarah Assistant 1985-12-01 12000 B003

S3 Harry Supervisor 1995-02-09 18000 B003

S4 Sophie Assistant 1992-05-04 9000 B007

S5 Louise Manager 1993-07-04 24000 B003

S6 Laura Assistant 1998-11-07 9000 B005

SELECT staffNo, name, position,
salary – 17000 AS salDIF

FROM staff
WHERE salary > 17000 ;

(SELECT AVG(salary) FROM Staff)

(SELECT AVG(salary) FROM Staff)

7 8

9 10

11 12

SubQueries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

A subquery can return…
• One single value

– From a single column and a single row.

– Used anywhere a single value is expected.

– E.g., on the right side of a comparison operator.

• A list of values

– From one column and multiple rows.

– Used anywhere a list of values is expected.

– E.g., when using IN.

• A virtual table

– From multiple columns and multiple rows.

– Used anywhere a table is expected.

– E.g., when using INSERT.

Recap: The IN Operator

Drivers
driver# name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

The IN operator is used to check if an attribute(s) has a
value from a set of values.

[NOT] IN (<value list>)

name
Jimmy
David
Bobby

Syntax is:

EXAMPLE: Given the following table:

a) List the names of drivers from Dundee or Aberdeen
SELECT name
FROM Drivers
WHERE address IN (“Dundee”, “Aberdeen”);

b) List the names of drivers not from Dundee or Aberdeen
SELECT name
FROM Drivers
WHERE address NOT IN (“Dundee”, “Aberdeen”);

name
Fred
John

Example: Use of IN

SELECT propertyNo, rooms, rent

FROM property

WHERE staffNo IN

(SELECT staffNo

FROM staff

WHERE branchNo =

(SELECT branchNo

FROM branch

WHERE street = “Main St”

)

);

• List the properties that
are handled by staff
working at the branch
on Main St.

• We cannot use = in
the outermost query
because there may be
more than one
member of staff
working at the branch
on Main Street.

• Suppose there is another table
property(propertyNo, address, rooms, rent, staffNo)

Content
• Introduction

• Terminology

• Subqueries after Relational Operators
– Aggregate Functions

• Subqueries after the IN Operator

• Subqueries within INSERT, UPDATE or
DELETE statements

• Summary and Reading

Subqueries within INSERT,
UPDATE or DELETE statements

• All the subqueries we have studied so
far have been inside an outer SELECT
query.

• Subqueries can be used within a
INSERT, UPDATE or DELETE statement.

• In the following example, the subquery
return a virtual table.

INSERT – Example 1

Retrieve all data on drivers from Dundee from the Driver
table and put these records into the DriverArchive table.

INSERT INTO DriverArchive
SELECT *
FROM Drivers
WHERE address = “Dundee”;

DriverArchive
driverID name address points
D010 Fred Perth 7

DriverArchive
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2

An INSERT query is useful when adding records to an archive.

Suppose our existing
archive is:

13 14

15 16

17 18

SubQueries In Relational Databases

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

INSERT – Example 2
Retrieve John’s id (driverID) and no. of points from the
Drivers table and put these into the DriverArchive table.

INSERT INTO DriverArchive (driverID, points)
SELECT driverID, points
FROM Drivers
WHERE name = “John”;

Drivers
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 6

DriverArchive
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 6

DriverArchive
driverID name address points
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2

UPDATE Example
UPDATE staff

SET salary = 20000

WHERE branchNo =

B003

;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

The outer query changes the Staff table to:

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S2 Sarah Assistant 1985-12-01 20000 B003

S3 Harry Supervisor 1995-02-09 20000 B003

S4 Sophie Assistant 1992-05-04 9000 B007

S5 Louise Manager 1993-07-04 20000 B003

S6 Laura Assistant 1998-11-07 9000 B005

DELETE Example

DELETE

FROM staff

WHERE branchNo =

B003

;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

• The inner SELECT finds the branch number
that corresponds to the branch with street
name “Main St”.

• In other words, it returns a result table
containing a single value B003.

Result of the DELETE Subquery

DELETE

FROM staff

WHERE branchNo =

B003 ;

(SELECT branchNo
FROM Branch
WHERE street = “Main St”)

After the outer query executes, the staff table becomes:

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S2 Sarah Assistant 1985-12-01 20000 B003

S3 Harry Supervisor 1995-02-09 20000 B003

S4 Sophie Assistant 1992-05-04 9000 B007

S5 Louise Manager 1993-07-04 20000 B003

S6 Laura Assistant 1998-11-07 9000 B005

staffNo name position dob salary branchNo

S1 Tom Manager 1990-12-03 30000 B005

S4 Sophie Assistant 1992-05-04 9000 B007

S6 Laura Assistant 1998-11-07 9000 B005

Before executing the query, the staff table is:

Summary

• A subquery can be used:

– immediately following:
• a relational operator in a WHERE clause or a HAVING

clause;

• the IN operator in a WHERE clause;

– within INSERT, UPDATE or DELETE statements.

Further Reading
Section 6.3.5 of (Connolly & Begg, 2014)

or

Section 3.2.6 of (Connolly & Begg, 2004)

or

Section 7.1 of (Donahoo & Speegle, 2005)

or

Section 3.8.1 of (Silberschatz et al., 2019)

The list of references is on the final page of the
exercise booklet.

19 20

21 22

23 24

Relational Algebra

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

Databases

Relational Algebra

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.

Content
• Data Manipulation Language

• Introduction to Relational Algebra and Calculus

• Relational Algebra

– Unary Operations

• Selection

• Projection

– Binary Operations

• Cartesian Product

• Union

• Set Difference

– Implementation in SQL

• Summary and Reading

Data Manipulation Language
(DML)

• A DML is a language that provides
a set of operations on the data
held in the database.

• The part of a DML that involves
data retrieval is called a query
language.

• The most common query language
is SQL.

Relational Algebra and Calculus
• Long history by computing standards.

– Defined and published by E.F. Codd in 1971.

• Formally, the relational algebra and relational
calculus are equivalent to one another.
– For every expression in the algebra, there is an

equivalent expression in the calculus.

• Neither is User friendly.

• They illustrate the basic operations required
of any Data Manipulation Language for
relational databases.

• A standard for comparing DMLs.

Relational Algebra and Calculus
• Relational Algebra

– A (high-level) procedural language.

– It can be used to tell the DBMS how to build a new
relation from one or more relations in the database.

• Relational Calculus

– Non-procedural language.

– A declarative language.

– Can be used to formulate the definition of a relation
in terms of one or more database relations.

– Specifies what is to be retrieved, rather than how to
retrieve it.

Relational Calculus

• Not related to differential and
integral calculus in mathematics.

• Takes its name from a branch of
symbolic logic called predicate
calculus.

• The rest of this lecture focuses on
relational algebra.

1 2

3 4

5 6

Relational Algebra

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

Content
• Data Manipulation Language

• Introduction to Relational Algebra and Calculus

• Relational Algebra
– Unary Operations

• Selection

• Projection

– Binary Operations

• Cartesian Product

• Union

• Set Difference

– Implementation in SQL

• Summary and Reading

Relational Algebra:
5 Fundamental Operations

• A theoretical language.

• Many variations of the operations that are
included in it.

• 5 fundamental operations.

Summarised on the next slide.

• Additional operations are defined as a
combination of two or more of the 5 basic
operations.

Beyond the scope of the Semester 1 part of this module.

Relational Algebra:
5 Fundamental Operations

Selection

Projection

Union: R ⋃ S

R

S

Set Difference: R-S

R

S

a
b

1
2
3

Cartesian Product

x

a 1
a 2
a 3
b 1
b 2
b 3

Selection (or Restriction)
• Selects a subset of the tuples in a relation that satisfy

a selection condition.

<selection condition> (<relation name>)

• σ is the lower-case letter of the Greek alphabet called
sigma.

• The selection condition is a Boolean expression
specified on the attributes of <relation-name>.

– Can include AND, NOT, OR.

• Result is a relation that has the same attributes as the
relation specified in <relation-name>.

Example of Selection

List all staff with a salary greater than 20,000.

Relational Algebra: σsalary>20000 (Staff)

SQL: SELECT * FROM Staff WHERE salary > 20000;

staffNo name position salary branchNo

S1 Tom Manager 30000 B005

S2 Sarah Assistant 12000 B003

S3 Harry Supervisor 18000 B003

S4 Sophie Assistant 9000 B007

S5 Louise Manager 24000 B003

S6 Laura Assistant 9000 B005

staffNo name position salary branchNo

S1 Tom Manager 30000 B005

S5 Louise Manager 24000 B003

Projection

• Selects a subset of the attributes of a
relation.

Π <attribute list> (<relation name>)

• Π is the capital letter of the Greek alphabet
called Pi.

• The order of the attributes in the result is the
same as that in the <attribute list>.

• Duplicates tuples are removed.

7 8

9 10

11 12

Relational Algebra

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

Example of Projection

List the number, name and salary of all staff.

Relational Algebra: Π staffNo, name, salary (Staff)
SQL: SELECT DISTINCT staffNo, name, salary

FROM Staff;

staffNo name position salary branchNo

S1 Tom Manager 30000 B005

S2 Sarah Assistant 12000 B003

S3 Harry Supervisor 18000 B003

staffNo name salary

S1 Tom 30000

S2 Sarah 12000

S3 Harry 18000

Relational Algebra: Closure
• Operations work on one or more relations

to define another relation without
changing the original.

• Both operands and results are relations.

• So the output from one operation can
become the input to another operation.

• This property is called closure.

• Notice the parallel with algebraic
operations in arithmetic, which take one or
more numbers as operands and return a
number as output.

Example of Closure

Πname (σsalary>20000 (Staff))

i.e., list the names of all staff with a salary > 20,000.

staffNo name position salary branchNo

S1 Tom Manager 30000 B005

S2 Sarah Assistant 12000 B003

S3 Harry Supervisor 18000 B003

S4 Sophie Assistant 9000 B007

S5 Louise Manager 24000 B003

S6 Laura Assistant 9000 B005

name

Tom

Louise

Unary and Binary Operators

• Unary Operations
–operate on one relation
–selection
–projection

• Binary Operations
–operate on two relations
–Cartesian product
–union
–set difference

Union R ⋃ S

• The union of relations R and S is a relation
that contains all the tuples of both R and
S.

• Duplicates are removed.

• R and S must be union compatible.
(This is defined two slides later.)

• The resulting relation might have the
same attribute names as the 1st or 2nd

relation.

R

SR S

Example of Union

• List all the employee numbers of staff who
are employees or managers or both.

• Relational Algebra:

Π EmpNo(Employee) U Π EmpNo(Manager)

Manager

8034 smith 7000
8044 yao 6000

EmpNo Ename Sal

7782
7839
8034
8044

EmpNo

Employee

7782 clark 2450
7839 king 5000

EmpNo Ename Sal

SQL:

SELECT EmpNo FROM Employee

UNION

SELECT EmpNo FROM Manager

13 14

15 16

17 18

Relational Algebra

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

Union Compatible
Two relations

R1(A1, A2,.... An) and R2(B1, B2,.... Bm)

are union compatible if, and only if,:

n = m

and

domain(Ai) = domain(Bi) for 1  i  n

E.g., Employee and Manager are union compatible.

In practice it is rare that two relations are union
compatible.

In some cases, projection may be used to make two
relations union compatible.

Example of Union with Projection

Π city (Branch) ⋃ Π address (Drivers)

i.e., list all cities where there are
either branches or drivers.

• The attributes city and address
have the same domain.

• This nesting of expressions is an
example of the closure property.

branNo street city postcode

B005 Balloon St Manchester M1 9DD

B007 Green Lane Bolton BL2 5DP

B003 Main St Rochdale OL8 1XY

B004 Old Rd Oldham OL1 3AB

B002 Mersey Sq Stockport SK1 5NX

driver# name address pts
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Manchester

Bolton

Rochdale

Oldham

Stockport

Perth

Dundee

Stirling

Aberdeen

Branch Drivers

SQL for Example

SELECT city FROM Branch

UNION

SELECT address FROM Drivers

i.e., list all cities where there are
either branches or drivers.

branNo street city postcode

B005 Balloon St Manchester M1 9DD

B007 Green Lane Bolton BL2 5DP

B003 Main St Rochdale OL8 1XY

B004 Old Rd Oldham OL1 3AB

B002 Mersey Sq Stockport SK1 5NX

driver# name address pts
D010 Fred Perth 7
D020 Jimmy Dundee 4
D030 David Dundee 2
D040 John Stirling 3
D050 Bobby Aberdeen 12

Manchester

Bolton

Rochdale

Oldham

Stockport

Perth

Dundee

Stirling

Aberdeen

Branch Drivers
Set Difference R ― S

• The set difference includes all tuples
that are in R but not in S.

• The resulting relation might have the
same attribute names as the first or
the second relation.

• R and S must be union compatible.

R

SR S

Example of Set Difference

List all the employees who are not managers.

Relational algebra:
Π EmpNo (Employee) – Π EmpNo(Manager)


Manager

8034 smith 7000
8044 yao 6000

EmpNo Ename Sal 7782 clark 2450
7839 king 5000
8034 smith 7000
8044 yao 6000

EmpNo Ename Sal

Employee

7782
7839

EmpNo
SQL:
SELECT EmpNo FROM Employee
EXCEPT
SELECT EmpNo FROM Manager

Cartesian Product R x S
• A relation which has a

concatenation of
every tuple of relation
R with every tuple of
relation S.

• If the 2 relations have
attributes with the
same name, attribute
names are prefixed
with the relation's
name.

a
b

1
2
3

Cartesian Product

x

a 1
a 2
a 3
b 1
b 2
b 3

19 20

21 22

23 24

Relational Algebra

Dr C.H. Bryant, School of SEE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

Example of Cartesian Product

DeptNo EmpNo
10 73
10 75
10 79
20 73
20 75
20 79
30 73
30 75
30 79

DeptNo

10

20

30

Dept

Emp

Relational

algebra:

Dept X Emp

SQL:

SELECT *

FROM Dept, Emp;

EmpNo

73

75

79

Implementation in SQL
Operation SQL

Π Projection
SELECT DISTINCT <column names>
FROM <table>;

σ Selection
SELECT *
FROM <table>
WHERE <condition>;

⋃ Union UNION

― Set Difference EXCEPT

x Cartesian
Product

SELECT *
FROM <table1>, <table2>;

Summary

• Relational Algebra is a theoretical language.

• Many variations of the operations that are
included in it.

• We have studied the 5 fundamental operations:

Π σ ⋃ ― x
• Additional operations are defined as combination

of two or more of the basic operations.

– These are beyond the scope of this part of this module.

– Represented by symbols such as ⋂ ⋈ ⋊ ⊳ ℑ

Further Reading

Chapter 5 up to (but not including) Section
5.1.3 of (Connolly & Begg, 2014)

or

Section 2.5, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5
and 2.6.6 of (Silberschatz et al., 2019).

The list of references is on the final page of
the exercise booklet.

25 26

27 28

Enhanced Entity Relationship (EER) Modelling

Dr C.H. Bryant, School of SSE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 1

1

Databases

Enhanced Entity Relationship
(EER) Modelling

Dr Bryant

Not to be reused without permission. © University of Salford, 2023.
2

Contents

• Recap: ER modelling

• Additional Features of ER models

• Motivation for Enhancement

• Enhanced ER models

• Summary and Reading

3

Recap: Role of Conceptual Modelling
Within the Design Process

Real-World Organisation/
Problem e.g., library

Logical Data Model

Conceptual Data
Model

Physical Model
(via DBMS)

Identify important concepts
and data needs.

Create a conceptual model.

Convert model to structures
required by database (relational,
object-oriented, etc.)

Implement using a DBMS:
create tables, add data,
constraints, etc.

4

Recap: Entity Relationship (ER) Modelling

• A conceptual data model:

– identifies the important elements and the relationships
between them;

– is independent of the type of logical model, the choice
of DBMS or the type of database.

• One form is the Entity-Relationship Model.

– Contains entities, attributes, relationships and
constraints.

– Can be represented graphically using the Crow’s foot
notation.

5

Example of more realistic ER diagram

Makes
Driver Trip Vehicle

Incurs

Includes

Uses

Food Processor

Expense

Maintenance

Engineer Qualification
Holds

CustomerStop

DeliversReceives

Food Processor Type
Has

Undergoes

VisitsDate-obtained

Performs

Staff

N.B. This has some
features which we have not
studied previously. By the end
of this lecture you should be
able to understand these. 6

Additional Features of ER Diagrams

• Relationships with attributes

• Complex relationships

–Ternary

–Quaternary

–Recursive

1 2

3 4

5 6

Enhanced Entity Relationship (EER) Modelling

Dr C.H. Bryant, School of SSE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 2

7

Relationship with an Attribute: Example 1

• Entities, with their identifiers and other attributes.

– Book(ISBN, title, author,…)

– Member(memberID, name, address, phone#, …)

• Relationships, with any attributes.
– Member borrows (return-date) Book [1:M][o:o]

• Constraints and assumptions:
– A member can borrow up to 6 books at once.

– Each book can be borrowed by at most one member.

• An ER diagram
return-date

borrowsMember Book

8

Relationship with an Attribute: Example 2

• A laboratory will have one or more research
assistants working in it.

• A research assistant may spend some of
their time working in one or more
laboratories.

• An assistant will spend a specific number of
hours in each lab.

works_in
Assistant Laboratory

hours

9

Ternary Relationships

• A relationship between three entities.
• E.g., suppose a member of staff

registers a client at a branch.

Staff Registers Branch

Client
10

Ternary Relationship Example 2
• Suppose a doctor prescribes a drug to a patient.

• Assumption: each prescription only contains one drug.

• Prescription is a single event that simultaneously
includes all three entities.

doctor prescription patient

drug

11

Quaternary Relationships

• A relationship between four entities.
• E.g., suppose a solicitor arranges a bid

on behalf of a buyer supported by a
bank.

Buyer Arranges Bank

Bid

Solicitor

12

Recursive Relationships

• A relationship
between an entity
and itself.

• E.g., Player tackles
Player.

• E.g., Person sells-to
Person.

Person

sells

Player

tackles

7 8

9 10

11 12

Enhanced Entity Relationship (EER) Modelling

Dr C.H. Bryant, School of SSE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 3

13

Contents

• Recap: ER modelling

• Additional Features of ER models

• Motivation for Enhancement

• Enhanced ER models

• Summary and Reading

14

Motivation for Enhancement
• The basic concepts of the Entity-Relationship

(ER) model are normally adequate for building
data models of traditional, administrative based
database systems such as:

– stock control

– product ordering

– customer invoicing

• Since 1980s there has been a rapid increase in
the development of many new database
systems that have more demanding database
requirements.

15

More Demanding Types of Database
• Computer Aided Design

(CAD)
– mechanical and electrical

design

– e.g., buildings, aircraft,
integrated circuit chips.

• Computer Aided
Manufacturing (CAM)
– discrete production e.g.,

cars on an assembly line

– continuous production
e.g., chemical synthesis.

16

More Demanding Types of Database
• Computer Aided Software Engineering (CASE)

– stages of the software development life cycle.

• Network Management Systems
– coordinate the delivery of communication services

across a computer network.

• Multimedia Databases
– free form text, photographs, diagrams, audio,

video, spreadsheets.

• Digital Publishing
– books, journals, articles.

• Interactive and Dynamic Websites

17

More Demanding Types of Database
• Geographic Information Systems

(GIS)
– Spatial and temporal data.

– Land management, underwater
exploration.

• Global Positioning System (GPS)
– Utilizes information broadcast from

GPS satellites.

– Finds current location of user with an
accuracy of tens of meters.

– Increasingly used in:
• utility maintenance applications;

• vehicle navigation systems.
18

Contents

• Recap: ER modelling

• Additional Features of ER models

• Motivation for Enhancement

• Enhanced ER models

• Summary and Reading

13 14

15 16

17 18

Enhanced Entity Relationship (EER) Modelling

Dr C.H. Bryant, School of SSE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 4

19

Enhanced Entity-Relationship (EER) model

• Basic concepts of ER modelling are often not
sufficient to represent the requirements of the
newer, more complex applications.

• The EER model is the ER model supported with
additional semantic concepts:

–Specialisation/generalisation

• The rest of this lecture introduces these.

–Aggregation and composition.

• Beyond the scope of this module.

20

Subclasses and Superclasses
• Inheritance allows one class to be defined as a special

case of a more general class.

• Special case is called a subclass.

• More general cases are called superclasses.

• All members of a subclass are also members of
superclass.

Person is a superclass.

Staff is a subclass of
Person.

Manager, SalesStaff
and Secretary are
subclasses of Staff.

Person

Staff

Sales

Personnel

Manager Secretary

21

Superclasses and Subclasses

• Some superclasses may contain
overlapping subclasses.
–E.g., there may be a member of staff

who is both a Manager and a member of
Sales Personnel.

• Not every member of a superclass
need be a member of a subclass.
–E.g., some members of staff may not

have a distinct job role.

22

Why Bother with Superclasses
and Subclasses?

• Unshared attributes can cause
problems if we try to represent all
members with a single entity.

• Can result in many members having
NULL values.

See example on next slide.

23

Example
• Sales Personnel have special attributes

such as salesArea and carAllowance.

• Only secretaries have a typing speed.

• Only managers can earn a bonus.

staffNo name position salary bonus Sales
Area

CarAllo
wance

Typing
speed

S1 Tom Manager 30000 2000

S2 Sarah Assistant 12000

S3 Harry Sales Assistant 27000 Bury 5000

S4 Sophie Assistant 9000

S11 Jane Secretary 8500 100

S12 Paula Sales Assistant 17000 York 3700 24

Inheritance
• Generalisation

– process of forming a
superclass.

• Specialisation

– process of forming a
subclass.

• By default, a subclass
inherits all the properties
of its superclass(es) and
defines its own unique
properties.

Person

Staff

Sales

Personnel

Manager

A-KIND-OF

A-KIND-OFA-KIND-OF

IS-A

Joe Steel

19 20

21 22

23 24

Enhanced Entity Relationship (EER) Modelling

Dr C.H. Bryant, School of SSE, Salford, UK.
Not to be reused without permission. © University of Salford, 31 August 2023

Page 5

25

Example of Inheritance
A member of the SalesPersonnel subclass inherits all
the attributes of Staff such as staffNo, name, position
and salary.

It also inherits those specifically associated with the
SalesPersonnel subclass such as salesArea and
carAllowance.

Person

Staff

Sales

Personnel

Manager Secretary

26

Why Bother with Superclasses
and Subclasses?

• Some relationships are only associated
with particular subclasses and not with a
superclass.

• E.g., relationships that are only associated
with particular types of staff and not with
staff in general.

– Sales Personnel may have distinct relationships
that are not appropriate for all staff.

– SalesPersonnel Uses Car

27

Another Example
People may drive one or more vehicles.

Vehicles may be driven by more than one person.

Lorries transport crates.

Buses carry passengers.

crate

lorry busperson
drives

transports

Vehicle

passenger

carries

28

Summary
• E-R models can include relationships with

their own attributes.

• E-R models can include a relationship:
– involving more than two entities;
–between an entity and itself.

• E-R models can be enhanced by modelling
hierarchies of entities using:
– specialisation and generalisation;
– subclasses and superclasses;
– inheritance.

29

References
The "crow's foot“ notation is denoted in:

• Appendix C.2 of (Connolly & Begg,
2014);

• Appendix A.2 of (Connolly & Begg, 2004)

• (Barker, 1989)

The list of references is on the final page of
the exercise booklet.

25 26

27 28

29

