
Database Systems Lecture Slides
CRN 32741, UMC G400 10045

Dr Bryant

Semester 2 of 2023/24

Page 1

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation and
Relational Algebra

LECTURE:
QUERY OPTIMISATION AND
RELATIONAL ALGEBRA

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Introduction

• Another operation of relational algebra.

• Query Processing.

• Query Optimisation.

• Query Trees.

• Comparing different strategies based on their relative
costs and selecting the one that minimises costs.

• Ordering the operations in a query using heuristic rules.

• Summary

• Further Reading

Contents

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 2

• When the relational model was first launched
commercially, one of the major criticisms was that the
performance of the queries was inadequate.

• Since then, a significant amount of research has been
devoted to developing highly efficient algorithms for
processing queries.

• SQL is a declarative language: the user specifies what
data is required, rather than how it is to be retrieved.

• This relieves the user of the responsibility of determining,
or even knowing, what is a good execution strategy.

• This responsibility is passed to the DBMS.

• This lecture will give some insight into how the DBMS
handles this responsibility.

Introduction

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 3

• One aspect of query optimisation involves
relational algebra.

• The operations used in this module are:
• Selection (or Restriction) σ
• Projection π
• Union 
• Set Difference -
• Cartesian Product x
• Theta join: ⋈F

• We studied all of these operations during
Semester One, except for the last one.

Operations of Relational Algebra

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 4

• R⋈F S defines a relation that contains tuples
satisfying F from the Cartesian product of two
relations R and S.

• In other words, it takes the Cartesian product of
two relations R and S and then selects the rows
which satisfy the condition F.

• R⋈F S is the same as σF (R x S)

• F may contain comparison operators such as:
< ≤ > ≥ = ≠

Theta join operation

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 5

Example of a Theta join operation

Orders
orderID custID date

2000 C100 2001-11-20
3000 C101 2001-11-27
4000 C456 2001-11-30

Customers
custID name address

C100 Allan Aberdeen
C101 John Dundee
C102 Betty Stirling

custID name address orderID custID date
C100 Allan Aberdeen 2000 C100 2001-11-20
C101 John Dundee 3000 C101 2001-11-27

Customers ⋈ customers.custID = Orders.custID Orders

defines the following relation.

Suppose in some database we have the following 2
linked relations:

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 6

1 2

3 4

5 6

Page 2

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation and
Relational Algebra

Definition: The activities involved in parsing,
validating, optimizing and executing a query.

The aims of query processing are

• to transform a query written in a high-level
language, typically SQL, into a correct and
efficient strategy, expressed in a low-level
language (which implements the relation
algebra), and

• to execute the strategy to retrieve the data.

Query Processing

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 7

• During Semester One, we learnt how to find a
relational algebra expression equivalent to a
given SQL statement.

• There will be many expressions that are
equivalent to the SQL statement.

• A relational algebra expression may be
represented as a tree, which is known as a
query tree.

• There will be many trees which are equivalent to
the SQL statement.

Why is Relational Algebra relevant to
query optimisation?

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 8

Definition: The activity of choosing an efficient
execution strategy for processing a query.

• As there are many equivalent transformations of
the same high-level query, the aim of query
optimisation is to choose the one that is most
efficient.

• When there is a large number of relations,
finding the optimal one is computationally
intractable, so the strategy is reduced to finding
a near optimal solution.

Query Optimisation

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 9

• An efficient query is one that minimizes
resource usage.

• Generally, we try to reduce the total execution
time of a query.

• The difference between a good strategy and a
bad one is often substantial.

• It may even be several orders of magnitude.
• Hence it can be worthwhile for the system to

spend a substantial amount of time on the
selection of a good strategy for processing a
query, even if the query is executed only once.

Efficiency

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 10

There are two main techniques for query
optimisation.

1. Comparing different strategies based on their
relative costs and selecting the one that
minimises costs.

2. Ordering the operations in a query using
heuristic rules.

We will study both of these later in this lecture.

To understand them, we need to learn what a
query tree is.

Techniques for Query Optimisation

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 11

SQL statement
SELECT Student.Name
FROM Student, Enrolment
WHERE
Student.ID = Enrolment.ID

AND
Enrolment.Code = 'DBS'

Relational Algebra

• Take the product of
Student and Enrolment

• Select tuples where the
IDs are the same and
the Code is DBS

• Project over
Student.Name

SQL  Relational Algebra

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 12

7 8

9 10

11 12

Page 3

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation and
Relational Algebra

• A graphical representation of the operations and
operands in a relational algebra expression.

• As usual in Computer Science, the trees are
drawn upside down, with the root at the top and
the leaves at the bottom.

• Each leaf node represents a relation.
• An internal node is an operation which can only

be executed when its operands are available
and is replaced by the result of the operation it
represents.

• The root node is executed last, and is replaced
by the result of the entire tree.

Query Tree

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 13

SELECT Student.Name
FROM Student, Enrolment

WHERE
Student.ID=Enrolment.ID
AND Enrolment.Code='DBS'

pStudent.Name

sStudent.ID = Enrolment.ID

s Enrolment.Code = ‘DBS’



Student Enrolment

SQL  Relational
Algebra  Tree

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 14

• The query tree on previous slide includes the
steps:

1. Take the product of Student and Enrolment.

2. Select those entries where the
Enrolment.Code = ‘DBS’.

• This is equivalent to:

1. Selecting those Enrolment entries with Code
= ‘DBS’.

2. Taking the product of the result of the
selection operator with Student.

Query Tree

Optimisation

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 15

Comparing the Query Trees
Non optimised Tree vs Partially Optimised Tree

pStudent.Name

sStudent.ID = Enrolment.ID

s Enrolment.Code = ‘DBS’



Student Enrolment

pStudent.Name

sStudent.ID = Enrolment.ID



Student s Enrolment.Code =

‘DBS’

Enrolment
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 16

• To see the benefit of this, consider the following
statistics.

– Salford has around 23,500 full time students.

– Each student is enrolled in about 10 modules.

– Hence there are about 235,000 enrolment
records.

– Only 150 students take DBS.

• From these statistics we can compute the sizes
of the relations produced by each operator in
the two query trees.

Statistical Data

Non optimised Tree vs Partially Optimised Tree

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 17

Query Trees With Statistics
Non optimised Tree vs Partially Optimised Tree

23,500
and

235,000

5,522,5
00,000

150

150 pStudent.Name

sStudent.ID =

Enrolment.ID

s Enrolment.Code = ‘DBS’



Student Enrol
ment

235,000

150 and
23,500

3,525,
000

150

150pStudent.Name

sStudent.ID =

Enrolment.ID



Students Enrolment.Code

= ‘DBS’

Enrol
ment

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 18

13 14

15 16

17 18

Page 4

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation and
Relational Algebra

• The original query tree produces an
intermediate result with 5,522,500,000 entries.

• The optimised version at worst has 3,525,000.

• Relations generated by two equivalent trees
have the same set of attributes and contain the
same set of tuples, although their attributes may
be ordered differently.

Statistical Analysis of Query Tree

Non optimised Tree vs Partially Optimised Tree

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 19

• So far in this lecture, we have studied how to
compare different strategies based on their
relative costs and select the one that minimises
costs.

• A drawback of cost-based optimisation is the
cost of doing the optimisation itself.

• So, optimisers use heuristics to reduce the cost
of optimisation.

• Next, we will study how to order the operations
in a query using heuristic rules.

• The rules are heuristics because they usually,
but not always, help to reduce the cost.

Techniques for Query Optimisation

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 20

a) Begin with the initial query tree for the SQL
query.

b) Move SELECT operations down the query tree.

c) Apply the more restrictive SELECT operations
first, e.g., equalities before range queries.

d) Replace Cartesian products followed by
selection, i.e., σF(R x S), with theta joins R⋈FS.

e) Move PROJECT operations down the query
tree.

Cost Optimiser: Heuristics (Rules of Thumb)

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 21

Steps in converting a query tree during
heuristic optimization

(a) Initial query tree
for the SQL query
made by parser.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 22

(b) Moving SELECT
operations down the
query tree.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 23

(c) Applying the
more restrictive
SELECT operation
first.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 24

19 20

21 22

23 24

Page 5

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation and
Relational Algebra

(d) Replacing
CARTESIAN
PRODUCT and
SELECT with JOIN
operations.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 25

(e) Moving
PROJECT
operations down
the query tree.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 26

• The aims of query processing are to transform a query
written in a high-level language, typically SQL, into a
correct and efficient strategy, expressed in a low-level
language (which implements the relation algebra), and
to execute the strategy to retrieve the data.

• As there are many equivalent transformations of the
same high-level query, the aim of the query
optimisation is to choose the one that is most efficient.

• There are two main techniques for query optimisation.

1. Comparing different strategies based on their
relative costs and selecting the one that minimises
costs.

2. Ordering the operations in a query using heuristic
rules.

Summary

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 27

• Chapter 23 entitled “Query Processing” of
(Connolly & Begg, 2014), specifically pages
727-729 and Section 23.3.2.

• Chapter 16 entitled “Query Optimisation” of
(Silberscatz et al., 2019), specifically pages 743-
744.

Further Reading

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 28

25 26

27 28

Page 1

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation:
Statistics and Indexes

LECTURE:
QUERY OPTIMISATION:
STATISTICS AND INDEXES

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Change the query tree to an equivalent but more
efficient one – see previous lecture.

• Exploit database statistics.

• Use indexes.

• There are many other options but they lie beyond the
scope of this module.

Query Optimization

How to optimise?

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Introduction

• Estimating costs using statistical information.

• Estimating the cost saving of a projection.

• Indexes

• Summary

• Further Reading

Contents

3Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 4

Data Storage

• Primary Storage - data is accessed directly by the CPU in
the form of main memory (or cache memory).

• Provides fast access.

• Has limited capacity.

• Is volatile (stored data is lost if power is cut).

• Secondary Storage - data is not directly accessed by the
CPU so it needs to be loaded into primary memory from
devices like magnetic disks.

• Slower access than primary storage.

• Has unlimited capacity.

• Is non-volatile (it retains stored data even if power is
cut).

• Usually the entire database is stored permanently on
secondary storage.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Survive power failures and system crashes.

• May fail themselves, but such failures usually occur
much less frequently than system crashes.

• Have a flat, circular shape.

• Both surfaces are covered with a magnetic material, in
which data is recorded.

• The surface is divided into sectors.

• A sector is the smallest unit of information that can be
read from, or written to, the disc.

• A block is a logical unit consisting of a fixed number of
sectors next to each other.

• A block of data can be retrieved without the need to
retrieve the rest of the data on a disc.

Magnetic Discs

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Recall that query optimisation is the activity of choosing
an efficient execution strategy for processing a query.

• To do this, the DBMS uses formulae to estimate the
costs of a number of options and selects the one with
the lowest cost.

• The DBMS routinely gathers statistical information about
relations.

• These statistics allow us to estimate the size of results
of various operations, as well as the cost of executing
the operations.

Database Statistics

6Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation:
Statistics and Indexes

• The result of a projection has a tuple for every tuple in
the operand.

Q) What is the change in resource usage?

A) The change in the length of tuples.

• Let’s estimate how big the change is for a particular
example.

• The dominant cost in query processing is usually
accesses to secondary storage (magnetic disc), which
are slow compared with speed of the main memory and
the CPU of the computer system.

• Therefore, the following example focuses exclusively on
estimating the required number of disc block accesses
and ignores the cost of writing the resulting relation.

Projection Example

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• E.g., suppose that:

– the size of each disc block is 1024 bytes,

– the size of the header of each disc block is 24
bytes,

– a relation R(a, b, c) contains 20,000 tuples,

– the size of each tuple is 190 bytes and

– each tuple comprises:

 header = 24 bytes,

 a = 8 bytes,

 b = 8 bytes,

 c = 150 bytes

Projection Example (continued)

8Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Without a projection, we can fit 5 tuples into 1
block
– 5 tuples * 190 bytes/tuple = 950 bytes
– 6 tuples * 190 bytes/tuple = 1140 bytes

• For 20,000 tuples, we would require 4,000 blocks
– 20,000 / 5 tuples per block = 4,000

• With a projection resulting in elimination of
column c, we could estimate that each tuple
would decrease to 40 bytes.
– (190 – 150 bytes).

Projection Example (continued)

9Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Now, the new estimate will be 25 tuples in 1 block.
- 25 tuples * 40 bytes/tuple = 1000 bytes
- 26 tuples * 40 bytes/tuple = 1040 bytes

• With 20,000 tuples, the new estimate is 800 blocks
- 20,000 tuples / 25 tuples per block = 800

• The projection reduces the number of blocks by a
factor of 5.
– (4000/800 = 5)

Projection Example (continued)

10Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• An index for a file in a database system works in similar
way to the index in a textbook.

• If we want to learn about a specific topic, we
– look for a word in the index at the back of the textbook that

describes that topic;

– find the pages where it occurs; and

– read the pages to find the information that we are seeking.

• The index in a textbook helps us because:
– the words in the index are in alphabetical order, making it easy

to find the word of interest;

– the index is much smaller than the book, making it much quicker
to search through.

Indexes – Analogy to a Textbook

11Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Indexes are additional data structures that improve the
speed of data retrieval operations on a database table.

– They are used to quickly locate data without having
to search every row in a table.

– The database system uses an index to find on which
disc block the corresponding data resides, and then
fetches the disc block to get this data.

• Indexes can also be used for ordering data more
efficiently.

• Indexes do not come for free!

– Creating an index might improve searching speed,
but it costs both additional writes and storage space.

Indexes for Files in a Database System

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3

Not to be reused without permission. © University of Salford
01/09/2023

Lecture: Query Optimisation:
Statistics and Indexes

• Primary index – The datafile is sequentially ordered by
an ordering key field and the indexing field is built on the
ordering key field, which is guaranteed to have a unique
value for each tuple.

• Clustering index – The datafile is sequentially ordered
on a nonkey field, and the indexing field is built on this
nonkey field, so that there can be more than one tuple
corresponding to a value in the indexing field.

• Primary or clustered indexes: affect the order that the
data is stored in a file.

• Secondary indexes: give a look-up table into the file.

Types of Indexes

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

A telephone book

• We have a table storing
people’s names,
addresses and phone
numbers.

• Usually you have a
name and want the
number.

• Sometimes you have a
number and want the
name.

Indexes

• A clustered index can
be made on name.

• A secondary index can
be made on number.

Indexes for a Telephone Directory

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Indexes for a Telephone Directory
(continued)

15

Name Number

Norman 921

David 528

Tim 234

Rob 611

The table

Order of the data
is not important

The file

Most of the time we
look up numbers by
name, so we sort
the file by name

Secondary index

Sometimes we
look up names
by number, so
index the number

Name Number

David 528

Norman 921

Rob 611

Tim 234

Number

234

528

611

921

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• A table can have, at most, one primary index or one
clustering index.

– The most frequently looked-up value is often the best
choice.

– Some DBMSs assume the primary key is the primary
index, as it is usually used to refer to rows.

• A table may have many secondary ones.

• Don’t create too many indexes.

– They can speed up queries, but they slow down
inserts, updates and deletes.

– Whenever the data is changed, the index may need
to change.

Restrictions on Indexes

16Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The DBMS routinely gathers statistical
information about relations.

• These statistics allow us to estimate the size of
results of various operations, as well as the cost
of executing the operations.

• Indexes are additional data structures that
improve the speed of data retrieval operations
on a database table.

• Indexes can slow down inserts, updates and
deletes.

Summary

17Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Chapter 23 entitled “Query Processing” of
(Connolly & Begg, 2014), specifically page 742.

• Appendix D.5 entitled “Indices” of (Connolly &
Begg, 2004), specifically pages 448-449.

• Section 12.1 and page 623 of (Silberscatz et al.,
2019).

Further Reading

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Page 1
Lecture: Transactions

Not to be reused without permission.
© University of Salford 01/09/2023

LECTURE:
TRANSACTIONS

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

Recap on Data Storage

Online Transaction Processing Systems

• Definition

• Examples

• Challenges

Transaction

• Definition

• A Simple Language for Studying Transactions

• Examples

• ACID Properties of Transactions

• Responsibilities for Upholding the ACID Properties

Summary and Further Reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

3

Recap on Data Storage

• Primary Storage - data is accessed directly by the CPU in
the form of main memory (or cache memory).

• Provides fast access.

• Has limited capacity.

• Is volatile (stored data is lost if power is cut).

• Secondary Storage - data is not directly accessed by the
CPU so it needs to be loaded into primary memory from
devices like magnetic disks.

• Slower access than primary storage.

• Has unlimited capacity.

• Is non-volatile (it retains stored data even if power is
cut).

• Usually the entire database is stored permanently on
secondary storage.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Definition: Systems that need real-time support for
querying and updating of databases by one or more
concurrent users.

Q) What makes the requirements of OLTP systems different

from other systems?

A) The database gets updated in real time frequently, but
it must always maintain the correctness of the database
state, regardless of:

– failures of both hardware and software components;

– when multiple users are accessing the database.

Online Transaction Processing (OLTP) Systems

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Banking and credit card transaction processing
systems;

• Transport reservation systems;

• Trading/brokerage systems;

• E-commerce.

Examples of OLTPs

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Two students registering for the same class.

OLTP: Example 1

6

Student Enrollment Database

NumEnrolled: 39

MaxEnrolled: 40

Read

Num:39
Max: 40

Read

Num:39
Max: 40

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2
Lecture: Transactions

Not to be reused without permission.
© University of Salford 01/09/2023

• Two students registering for the same class.

OLTP: Example 1 (continued)

7

Student Enrollment Database

NumEnrolled: 40

MaxEnrolled: 40

Register Register
NumEnrolled: 41

MaxEnrolled: 40

Database is in an inconsistent state (violates semantic
constraint) when processing requests from multiple
concurrent users!

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

OLTP: Example Two

8

If the initial balance is £400, then the final balance
should be £250 no matter who goes first.

Marge at ATM2
withdraws £50. Homer at ATM1

withdraws £100.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

OLTP: Example Two (a)

9

read balance; £400
if balance > amount then

balance := balance - amount; £300
write balance; £300

read balance; £300
if balance > amount then

balance := balance - amount; £250
write balance; £250

Homer withdraws £100:

Marge withdraws £50:

Final balance is £250.
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

read balance; £400

if balance > amount then
balance:=balance-amount; £300
write balance; £300

OLTP: Example Two (b)

10

read balance; £400
if balance > amount then
balance := balance - amount; £350
write balance; £350

Final balance is £300.

Marge withdraws £50:Homer withdraws £100:

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

OLTP: Example Two (c)

11

read balance; £400

if balance > amount then
balance := balance-amount; £300
write balance; £300

read balance; £400

if balance > amount then
balance := balance-amount; £350
write balance; £350

Marge withdraws £50:

Final balance is £350.

Homer withdraws £100:

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Although your SQL code is written correctly, the database
may still be in an inconsistent state after processing
transactions due to:

– failures of both hardware and software components;

– multiple users accessing the database simultaneously.

• A consistent state of the database means it satisfies:

– all the constraints specified in the schema, i.e., the
overall description of the database;

• e.g., database integrity constraints (such as primary
keys and referential integrity.)

– any other constraints on the database that should hold

• e.g., semantic constraints.

Challenges of OLTP

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3
Lecture: Transactions

Not to be reused without permission.
© University of Salford 01/09/2023

• Definition: An action, or series of actions, carried out by
a single user or application program, that reads or
updates the contents of the database.

• A transaction is treated as a logical unit of work on the
database.

• It may be:

– an entire program,

– a part of a program, or

– a single statement (e.g., an SQL INSERT or UPDATE
statement).

• Each transaction includes one or more database
operations, such as read and write.

Transaction

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Bank processing

– deposit

– withdrawal

• Student registration

– enrolment

– withdrawal

• Airline reservation

– reservation

– cancellation

Examples of Transactions

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• As SQL is a powerful and complex language, we will use
a much simpler language while we are studying
transactions.

• This simple language focuses on when data are moved
between primary and secondary storage because it is
important to know if a change to a data item appears
only on primary storage or if it has been written to the
database on secondary storage.

• The simple language:

– ignores SQL insert and delete operations;

– uses the read and write operations described on the
next slide.

A Simple Language for Studying
Transactions

15Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• read(X) transfers the data item X from the database on
secondary storage to a variable, also called X, in a
buffer (on primary storage) belonging to the transaction
that executed the read operation.

• write(X) transfers the value in the variable X in the buffer
(on primary storage) of the transaction that executed the
write to the data item X in the database (on secondary
storage).

• X could be any component of a database:

– Attribute of a tuple

– Tuple

– Block in which a tuple resides

– Relation…

The Simple Language

16Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Bank deposit transaction

begin_transaction
read(account)
account.bal := account.bal + amount
write(account)

end_transaction

This transaction involves:

– two database operations (read and write);

– a non-database operation (assignment).

Example of a Transaction

17Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Atomicity
– A transaction must either run to its completion or, if it is not

completed, should have no effect at all on the database
state.

• Consistency
– A transaction should correctly transform the database

from one consistent state to another.
• Isolation

– A transaction should appear as though it is being
executed in isolation from other transactions.

– Other transactions executing concurrently should not
interfere with the execution of a transaction.

• Durability
– Changes applied to the database by a committed

transaction must persist in the database.
– Changes must never be lost because of any failure.

ACID Properties of Transactions

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Page 4
Lecture: Transactions

Not to be reused without permission.
© University of Salford 01/09/2023

• Ensuring consistency is the responsibility of
application programmers.

• Ensuring atomicity, isolation, and durability
properties are the responsibilities of the DBMS.

– Atomicity and durability properties are
enforced by the recovery subsystem of
DBMS.

– Isolation property is enforced by the
concurrency control subsystem of DBMS.

Responsibilities for Upholding the ACID
Properties

19Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Transactions can have one of two outcomes:

1. Success: the transaction commits and database
reaches a new consistent state.

2. Failure: the transaction aborts, and database must
be restored to the consistent state it was in before
the transaction started.

• Such a transaction is rolled back or undone.

• Committed transactions cannot be aborted.

– An aborted transaction that is rolled back can be
restarted later.

Basic Ideas About Transactions

20

Begin Run
Abort

Commit
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Online Transaction Processing Systems need real-time
support for querying and updating of databases by one
or more concurrent users.

• A transaction is an action, or series of actions, carried
out by a single user or application program, that reads or
updates the contents of the database.

• Ensuring consistency is the responsibility of application
programmers.

• Ensuring atomicity, isolation, and durability properties
are the responsibilities of the DBMS.

• Successful transactions are committed.

• Failed transactions are aborted.

Summary

21Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Pages 668 - 671 of Section 22.1 of (Connolly &
Begg, 2014).

• Sections 17.1 and 17.2 of (Silberscatz et al.,
2019).

Further Reading

22Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

19 20

21 22

Page 1
Lecture: Concurrency

Not to be reused without permission.
© University of Salford 01/09/2023

LECTURE:
CONCURRENCY

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Serial Schedules

– Definition

– A Simple Bank Application

– Examples

– Some Observations about Serial Schedules

• Non Serial Schedules

– Definition

– Examples

– Problem

• Motivation for Allowing Concurrency

• Summary

• Further Reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Definition: A schedule is a sequence of
operations by a set of concurrent transactions that
preserves the order of the operations in each of
the individual transactions.

• Definition: A serial schedule is one where the
operations of each transaction are executed
consecutively without any interleaved operations
from other transactions.

• (The word interleaving means interspersed with,
especially alternately.)

Serial Schedules

3Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Throughout this lecture, all the examples are for the
following scenario.

• There are 3 bank accounts: A, B and C.

• Each account initially has a balance of £500.

• There are 2 transactions to be performed.

• Transaction T1 is to transfer £100 from account A to
account B.

• Transaction T2 is to transfer £100 from account A to
account C.

A Simple Bank Application

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Read (A, t)
t := t - 100
Write (A, t)
Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s - 100
Write (A, s)
Read (C, s)
s := s + 100
Write (C, s)

A B C

300

600

500 500500

400

600

300 + 600 + 600 = 1500

T1

T2

Serial Schedule

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Read (A, t)
t := t - 100
Write (A, t)
Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s - 100
Write (A, s)
Read (C, s)
s := s + 100
Write (C, s)

A B C

300

600

500 500500

400

600

300 + 600 + 600 = 1500

T2

T1

Another Serial Schedule

6Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2
Lecture: Concurrency

Not to be reused without permission.
© University of Salford 01/09/2023

• When transactions are executed in series, there is no
interference between transactions because only one is
executing at any given time.

• No matter which serial schedule is chosen, serial execution
(by itself) never leaves the database in an incorrect state.

– Assuming each transaction is correct.

• Hence, every serial execution is considered correct.

• However different serial schedules may produce different
results.

– This is not the case in the scenario shown on Slide 4,
but it is easy to imagine scenarios where it may be true.

– E.g., in banking, it matters whether interest is calculated
on an account before or after a large deposit is made.

Some Observations about Serial Schedules

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Definition: A non-serial schedule is one where
the operations from a set of concurrent
transactions are interleaved.

Non Serial Schedules

8Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Read (A, t)
t := t - 100
Write (A, t)

Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s - 100
Write (A, s)

Read (C, s)
s := s + 100
Write (C, s)

A B C

600

500 500500

400

300

600

300 + 600 + 600 = 1500

A Non Serial Schedule

9

T1

T1

T2

T2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Read (A, t)
t := t - 100
Write (A, t)

Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s - 100
Write (A, s)

Read (C, s)
s := s + 100
Write (C, s)

How can we transform this non serial
schedule into an equivalent serial schedule?

10

T1

T1

T2

T2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Read (A, t)
t := t - 100
Write (A, t)
Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s - 100
Write (A, s)
Read (C, s)
s := s + 100
Write (C, s)

Equivalent Serial Schedule

11

T1

T2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Although two transactions may be correct in
themselves, interleaving of operations may
produce an incorrect result.

• (The word interleaving means interspersed with,
especially alternately.)

• E.g., consider the schedule shown on the next
slide.

Interleaving

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3
Lecture: Concurrency

Not to be reused without permission.
© University of Salford 01/09/2023

Read (A, t)
t := t - 100

Write (A, t)
Read (B, t)
t := t + 100
Write (B, t)

Read (A, s)
s := s – 100
Write (A, s)

Read (C, s)
s := s + 100
Write (C, s)

This leads to an
inconsistent state.

Problem

13

T1

T2

T1

T2

A B C

500 500 500

400

400

600

600

400 + 600 + 600 = 1600
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Q) Why do we bother with concurrency if it can
cause problems?

A) There are 2 good reasons for allowing
concurrency.

1. Improved throughput and resource utilisation.

2. Reduced waiting time.

Motivation for Allowing Concurreny

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The CPU and disks can operate in parallel.

• Therefore I/O activity and CPU processing can be done in
parallel.

• Some steps of a transaction involve I/O activity, others
involve CPU activity.

• While one transaction does a read or write on a disc, a
second transaction can be running in the CPU and a third
transaction can be doing a read or write on another disk.

• This increases the number of transactions executed in a
given amount of time, i.e., there is improved throughput.

• The CPU and disks spend less time idle, i.e., the resource
utilisation increases.

Improved Throughput and
Resource Utilisation

15Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The duration of transactions will vary.

• If transactions run serially, a short one may have
to wait for a preceding long one to complete.

• If transactions are operating on different parts of
the database, it is better to allow them to run
concurrently.

• Concurrent execution reduces:

– the unpredictable delays in running
transactions and

– the average time for a transaction to be
completed.

Reduced Waiting Time

16Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• A schedule is a sequence of operations by a set of
concurrent transactions that preserves the order of the
operations in each of the individual transactions.

• A serial schedule is one where the operations of each
transaction are executed consecutively without any
interleaved operations from other transactions.

• When transactions are executed in series, there is no
interference between transactions because only one is
executing at any given time.

• A non-serial schedule is one where the operations
from a set of concurrent transactions are interleaved.

• Although two transactions may be correct in themselves,
interleaving of operations may produce an incorrect
result.

Summary

17Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Page 672 of (Connolly & Begg, 2014).

• Sections 17.2 and 17.5 of (Silberscatz et al.,
2019).

Further Reading

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Page 1
Lecture: Concurrency Problems

Not to be reused without permission.
© University of Salford 01/09/2023

LECTURE:
CONCURRENCY PROBLEMS

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Recap: Transactions

• Recap: Concurrency

• Concurrency Control

• The Lost Update Problem

• The Uncommitted Update Problem

• The Inconsistent Analysis Problem

• Conflicting Actions: General Rules

• Summary

• Further Reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• A transaction is an action, or series of actions, carried out
by a single user or application program, that reads or
updates the contents of the database.

• Transactions can have one of two outcomes:

1. Success: the transaction commits and database
reaches a new consistent state.

2. Failure: the transaction aborts, and database must be
restored to the consistent state it was in before the
transaction started.

• Such a transaction is rolled back or undone.

Recap: Transactions

3

Begin Run
Abort

Commit
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• A schedule is a sequence of operations by a set of
concurrent transactions that preserves the order of the
operations in each of the individual transactions.

• A serial schedule is one where the operations of each
transaction are executed consecutively without any
interleaved operations from other transactions.

• When transactions are executed in series, there is no
interference between transactions because only one is
executing at any given time.

• A non-serial schedule is one where the operations
from a set of concurrent transactions are interleaved.

• Although two transactions may be correct in themselves,
interleaving of operations may produce an incorrect
result.

Recap: Concurrency

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Definition: Process of managing simultaneous
operations on the database without having them
interfere with one another.

• Prevents interference when two or more users
are accessing the database simultaneously and
at least one is updating data.

• Concurrency control is needed when
transactions are permitted to process
simultaneously, if at least one is an update.

• This lecture is concerned with problems caused
by a lack of concurrency control.

Concurrency Control

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

The Lost Update Problem

6

Time T1 T2 balx

t1 begin_transaction 100

t2 begin_transaction read(balx) 100

t3 read(balx) balx:=balx+100 100

t4 balx:=balx-10 write(balx) 200

t5 write(balx) commit 90

t6 commit 90

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2
Lecture: Concurrency Problems

Not to be reused without permission.
© University of Salford 01/09/2023

• Successfully completed update is overridden by
another user.

• T1 withdrawing £10 from an account with balx,
initially £100.

• T2 depositing £100 into same account.

• Serially, final balance would be £190.

• The loss of T2's update would be avoided if T1

was prevented from reading balx until after T2‘s
update.

Summary of the Lost Update Problem

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

The Uncommitted Dependency Problem
(Dirty Read)

8

Time T3 T4 balx
t1 begin_transaction 100

t2 read(balx) 100

t3 balx:=balx+100 100

t4 begin_transaction write(balx) 200

t5 read(balx) … 200

t6 balx:=balx-10 rollback 100

t7 write(balx) 190

t8 commit 190
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Occurs when one transaction can see
intermediate results of another transaction before
it has committed.

• T4 updates balx to £200 but it aborts, so balx
should be back at original value of £100.

• T3 has read new value of balx (£200) and uses
this value as the basis of £10 reduction, giving a
new balance of £190, instead of £90.

• This problem could be avoided by preventing T3

from reading balx until after T4 commits or aborts.

Summary of the Uncommitted
Dependency Problem (Dirty Read)

9Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

The Inconsistent Analysis Problem

10

Time T5 T6 balx baly balz sum

t1 begin_transaction 100 50 25

t2 begin_transaction sum:=0 100 50 25 0

t3 read(balx) read(balx) 100 50 25 0

t4 balx:=balx-10 sum:=sum+balx 100 50 25 100

t5 write(balx) read(baly) 90 50 25 100

t6 read(balz) sum:=sum+baly 90 50 25 150

t7 balz:=balz+10 90 50 25 150

t8 write(balz) 90 50 35 150

t9 commit read(balz) 90 50 35 150

t10 sum:=sum+balz 90 50 35 185

t11 commit 90 50 35 185

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Occurs when a transaction reads several values
and a second transaction updates some of them
during execution of first.

• T6 is totaling balances of account x (£100),
account y (£50), and account z (£25).

• Meanwhile, T5 has transferred £10 from balx to
balz, so T6 now has wrong result (£10 too high).

• This problem could be avoided by preventing T6

from reading balx and balz until after T5 has
completed its updates.

Summary of the Inconsistent Analysis
Problem

11Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Two transactions do not conflict with each
other (and therefore their order of execution
is not important) if they:

– are only reading data items;

• T1 does read(A) and T2 does read(A)

– or operate on completely separate data
items.

• T1 does read(A) and T2 does write(B)

• T1 does write(A) and T2 does read(B)

• T1 does write(A) and T2 does write(B)

Conflicting Actions: General Rules

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3
Lecture: Concurrency Problems

Not to be reused without permission.
© University of Salford 01/09/2023

Two operations conflict only if all of these
are true:

– they belong to different transactions;

– they access the same data item and;

– at least one of them writes the item.

• T1 does read(A) and T2 does write(A)

• T1 does write(A) and T2 does read(A)

• T1 does write(A) and T2 does write(A)

Conflicting Actions: General Rules (continued)

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Concurrency Control is the process of managing
simultaneous operations on the database without
having them interfere with one another.

• Two operations conflict only if all of these are true:

– they belong to different transactions;

– they access the same data item;

– at least one of them writes the item.

Further Reading

• Pages 673 – 675 of Section 22.2.1 of (Connolly &
Begg, 2014).

Summary

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

Page 1
Lecture: Graph Theory and Precedence Graphs

Not to be reused without permission.
© University of Salford 01/09/2023

LECTURE:
GRAPH THEORY AND
PRECEDENCE GRAPHS

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Correct Schedules

• Serializable Schedules

• Conflict Serializability

• Graph Theory

– Directed Graph

– Acyclic Graph

• Precedence Graph

• Summary

• Further Reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Correct Schedules

• Throughout this lecture, we will assume that:

– initial database state is consistent;

– each transaction is semantically correct,

• consistent state  consistent state.

• Serial execution of transactions:

– initial state  consistent state

• Serializable schedule:

– A schedule equivalent to a serial schedule.

– Always “correct”.

3Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The objective is to find non-serial schedules that
allow transactions to execute concurrently
without interfering with one another, and thereby
produce a database state that could be
produced by a serial execution.

• If a set of transactions executes concurrently,
we say the (non-serial) schedule is correct if it
produces the same results as some serial
execution.

• Such a schedule is called serializable.

Serializable Schedules

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• If the schedule orders any conflicting operations
in the same way as some serial execution then
the results of the concurrent execution are the
same as the results of that serial schedule.

• This type of serializability is called conflict
serializability.

• Conflict serializability can be tested using
precedence graphs.

– Construct precedence graph G for a given
schedule S.

– S is conflict-serializable if G is acyclic.

Conflict Serializability

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Graph Theory

Directed Graph

6

Nodes

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2
Lecture: Graph Theory and Precedence Graphs

Not to be reused without permission.
© University of Salford 01/09/2023

Graph Theory

Directed Graph

7

Edges

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Graph Theory

Directed Graph

8

Cycle

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Graph Theory

Directed Graph

9

Not a cycle

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Graph Theory

Acyclic Graph: A graph with no cycles

10Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Used to determine whether a schedule S is conflict
serializable.

• Draw a node for each transaction, T1, T2, …Tn.

• Draw directed edges for every time

– Ti reads X, and then Tj writes X, draw edge from Ti to Tj

– Ti writes X, and then Tj reads X, draw edge from Ti to Tj

– Ti writes X, and then Tj writes X, draw edge from Ti to Tj

• S is conflict serializable if the graph has no cycles.

Precedence Graph

11Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Precedence Graph

Example 1 – A Serial Schedule

12

i -> j
r w
w r
w w

This schedule is serializable because the precedence
graph is acyclic, i.e., it does not have a directed cycle.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3
Lecture: Graph Theory and Precedence Graphs

Not to be reused without permission.
© University of Salford 01/09/2023

Precedence Graph

Example 2 – A non-serial but serializable schedule

13

This schedule is conflict serializable because precedence
graph is acyclic, i.e., it does not have a directed cycle.

i -> j
r w
w r
w w

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

The schedule in Example 2 is serializable because it is
equivalent to the serial schedule in Example 1.

It is equivalent because in both schedules:

• the read_item(X) of T2 reads the value of X written by
T1;

• the read_item(X) of T1 reads the database values from
the initial database state;

• T1 is the last transaction to write Y;

• T2 is the last transaction to write X.

Example 2 – Why it is serializable?

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• To convince ourselves that the schedule in Example 2 is
equivalent to the serial schedule in Example 1, let’s try
to rearrange Example 2.

• Notice that read_item(Y) and write_item(Y) operations of
T1 did not conflict with the operations of T2 because
they access different items.

• Therefore, they can be moved to before read_item(X)
and write_item(X) of T2, leading to the equivalent serial
schedule.

Rearranging Example 2

15Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Precedence Graph

Example 3 – A non-serial and non-serializable schedule
schedule.

16

This schedule is non-serializable because the precedence
graph is cyclic, i.e., it contains a directed cycle.

i -> j
r w
w r
w w

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Precedence Graph

Example 4

17

i -> j
r w
w r
w w

Is it conflict serializable?
No, because the precedence graph is cyclic, i.e., it contains a
directed cycle.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Precedence Graph

Example 5

18

i -> j
r w
w r
w w

Is it conflict serializable?
Yes, because the precedence graph is acyclic, i.e., it does not
contain a directed cycle.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Page 4
Lecture: Graph Theory and Precedence Graphs

Not to be reused without permission.
© University of Salford 01/09/2023

• The objective is to find non-serial schedules that allow
transactions to execute concurrently without interfering
with one another, and thereby produce a database state
that could be produced by a serial execution.

• If a non-serial schedule orders any conflicting
operations in the same way as some serial execution
then the results of the concurrent execution are the
same as the results of that serial schedule.

• Such a non-serial schedule is called conflict
serializable.

• A serializable schedule gives the benefits of concurrent
executions without giving up correctness.

• A schedule is conflict serializable if its precedence graph
is acyclic.

Summary

19Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Pages 676 and 677 of (Connolly & Begg, 2014).

• Section 17.6 of (Silberscatz et al., 2019).

Further Reading

20Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

19 20

Lecture: Locks and Concurrency Control

Not to be reused without permission. © University of Salford 01/09/2023

Page 1

LECTURE: LOCKS AND
CONCURRENCY CONTROL

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Locks
• Basic Rules
• How Locks are Used
• Serializable Schedules
• Two-Phase Locking (2PL)
• Lost Update Problem
• Uncommitted Dependency Problem
• Inconsistent Analysis Problem
• Observations on Two-Phase Locking
• Reading

Contents

2

• Transactions can ask the DBMS to place
locks on data items in the DB.

• Locks prevent another transaction from
modifying an object or even reading it in the
case of an exclusive lock.

• Locks are implemented by inserting a flag in
the object or by keeping a list of locked parts
of the database.

• Objects of various sizes (e.g., database, table,
tuple, data item) can be locked.
– Size determines the fineness, or

granularity, of the lock.

Locks

3

• Locks can be either exclusive or shared
by transactions.

• Shared locks are sufficient for read-only
access.

• Exclusive locks are necessary for write
access.

• An exclusive lock gives a transaction
exclusive access to an item.

Exclusive and Shared Locks

4

• If a transaction has a shared lock on an
item, it can read, but not update, the item.
– Reads cannot conflict, so more than one

transaction can hold shared locks
simultaneously on same item.

• If a transaction has an exclusive lock on
an item, it can both read and update the
item.
– Writes can conflict, so only one

transaction can lock an item for writing.

Locking - Basic Rules

5

• Any transaction that needs to access a data item must first
lock the item by requesting:

– a shared lock for read-only access or

– an exclusive lock for both read and write access.

• If the item is not already locked by another transaction, the
lock will be granted.

• If the item is currently locked, the DBMS determines whether
the request is compatible with the existing lock.

– If a shared lock is requested on an item that already has
a shared lock on it, the request will be granted;

– Otherwise, the transaction must wait until the existing
lock is released.

• A transaction continues to hold a lock until it explicitly
releases it either during execution or when it terminates
(aborts or commits).

How Locks are Used

6

1 2

3 4

5 6

Lecture: Locks and Concurrency Control

Not to be reused without permission. © University of Salford 01/09/2023

Page 2

• Recall that the objective is to find non-serial
schedules that allow transactions to execute
concurrently without interfering with one
another, and thereby produce a database state
that could be produced by a serial execution.

• To guarantee serializability, we must follow an
additional protocol concerning the positioning of
the lock and unlock operations in every
transaction.

• The best known such protocol is two-phase
locking.

Serializable Schedules

7

• A transaction follows 2PL protocol if all locking operations
precede first unlock operation in the transaction.

• Each transaction can be divided into two separate phases:

1. Growing phase: acquires all locks but cannot release
any locks.

2. Shrinking phase: releases locks but cannot acquire
any new locks.

• There is no requirement that all locks are obtained
simultaneously.

• The rules are:

– A transaction must acquire a read or write lock on an
item before operating on the item.

– Once the transaction releases a lock it can never
acquire any new locks.

Two-Phase Locking (2PL)

8

Lost Update Problem

Time T1 T2 balx

t1 begin_transaction 100

t2 begin_transaction read(balx) 100

t3 read(balx) balx:=balx+100 100

t4 balx:=balx-10 write(balx) 200

t5 write(balx) commit 90

t6 commit 90

9

Preventing Lost Update Problem

Time T1 T2 balx

t1 begin_transaction 100

t2 begin_transaction writelock(balx) 100

t3 writelock(balx) read(balx) 100

t4 read(balx) balx:=balx+100 100

t5 balx:=balx-10 write(balx) 200

t6 write(balx) commit/unlock(balx) 200

t7 commit/unlock(balx)

10

Lost Update Problem Avoided

Time T1 T2 balx

t1 begin_transaction 100

t2 begin_transaction writelock(balx) 100

t3 writelock(balx) read(balx) 100

t4 WAIT balx:=balx+100 100

t5 WAIT write(balx) 200

t6 WAIT commit/unlock(balx) 200

t7 read(balx) 200

t8 balx:=balx-10 200

t9 write(balx) 190

t10 commit/unlock(balx) 190
11

Uncommitted Dependency Problem

Time T3 T4 balx
t1 begin_transaction 100

t2 read(balx) 100

t3 balx:=balx+100 100

t4 begin_transaction write(balx) 200

t5 read(balx) … 200

t6 balx:=balx-10 rollback 100

t7 write(balx) 190

t8 commit 190

12

7 8

9 10

11 12

Lecture: Locks and Concurrency Control

Not to be reused without permission. © University of Salford 01/09/2023

Page 3

Preventing Uncommitted Dependency
Problem

Time T3 T4 balx

t1 begin_transaction 100

t2 writelock(balx) 100

t3 read(balx) 100

t4 begin_transaction balx:=balx+100 100

t5 writelock(balx) write(balx) 200

t6 read(balx) … 200

t7 balx:=balx-10 rollback/unlock(balx) 100

t8 write(balx) 100

t9 commit/unlock(balx) 190

13

Uncommitted Dependency Problem
Avoided
Time T3 T4 balx
t1 begin_transaction 100

t2 writelock(balx) 100

t3 read(balx) 100

t4 begin_transaction balx:=balx+100 100

t5 writelock(balx) write(balx) 200

t6 WAIT … 200

t7 WAIT rollback/unlock(balx) 100

t8 read(balx) 100

t9 balx:=balx-10 100

t10 write(balx) 90

t11 commit/unlock(balx) 90
14

Inconsistent Analysis Problem

15

Time T5 T6 balx baly balz sum

t1 begin_transaction 100 50 25

t2 begin_transaction sum:=0 100 50 25 0

t3 read(balx) read(balx) 100 50 25 0

t4 balx:=balx-10 sum:=sum+balx 100 50 25 100

t5 write(balx) read(baly) 90 50 25 100

t6 read(balz) sum:=sum+baly 90 50 25 150

t7 balz:=balz+10 90 50 25 150

t8 write(balz) 90 50 35 150

t9 commit read(balz) 90 50 35 150

t10 sum:=sum+balz 90 50 35 185

t11 commit 90 50 35 185

Preventing Inconsistent Analysis
Problem
Time T5 T6 balx baly balz sum

t1 begin_transaction

t2 begin_transaction sum:=0

t3 write_lock(balx) read_lock(balx)

t4 read(balx) read(balx)

t5 balx:=balx-10 sum:=sum+balx

t6 write(balx) read_lock(baly)

t7 write_lock(balz) read(baly)

t8 read(balz) sum:=sum+baly

t9 balz:=balz+10

t10 write(balz)

t11 commit/unlock(balx z) read_lock(balz)

t12 read(balz)

t13 sum:=sum+balz

t14 commit/unlock(balx y z)

t15

t16

t17

t18
16

Inconsistent Analysis Problem Avoided
Time T5 T6 balx baly balz sum

t1 begin_transaction 100 50 25

t2 begin_transaction sum:=0 100 50 25 0

t3 write_lock(balx) read_lock(balx) 100 50 25 0

t4 read(balx) WAIT 100 50 25 0

t5 balx:=balx-10 WAIT 100 50 25 0

t6 write(balx) WAIT 90 50 25 0

t7 write_lock(balz) WAIT 90 50 25 0

t8 read(balz) WAIT 90 50 25 0

t9 balz:=balz+10 WAIT 90 50 25 0

t10 write(balz) WAIT 90 50 35 0

t11 commit/unlock(balx z) WAIT 90 50 35 0

t12 read(balx) 90 50 35 0

t13 sum:=sum+balx 90 50 35 90

t14 read_lock(baly) 90 50 35 90

t15 read(baly) 90 50 35 90

t16 sum:=sum+baly 90 50 35 140

t17 90 50 35 140

t18 90 50 35 140

t19 read_lock(balz) 90 50 35 140

t20 read(balz) 90 50 35 140

t21 sum:=sum+balz 90 50 35 175

t22 commit/unlock(balx y z) 90 50 35 175 17

• If every transaction in a schedule follows the basic 2PL
protocol then the schedule is guaranteed to be conflict
serializable.

• However, 2PL does not:

– permit all possible serializable schedules;

– prevent deadlock.

• There are variations of 2PL but these lie beyond the
scope of this module.

Further Reading

• Section 22.2.3 of (Connolly & Begg, 2014).

• Chapter 18 of (Silberscatz et al., 2019), specifically
pages 835-841.

Observations on Two-Phase Locking

18

13 14

15 16

17 18

Lecture: Deadlock

Not to be reused without permission. © University of Salford 01/09/2023

Page 1

LECTURE: DEADLOCK
Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Definition of Deadlock

• Breaking a Deadlock

• Three Techniques for Handling Deadlock

1. Timeout

2. Deadlock Prevention

3. Deadlock Detection and Recovery

• Wait-For-Graph (WFG)

• Recovery from Deadlock Detection

• Summary

• Further Reading

Contents

2

• Definition: An impasse that may result when two (or
more) transactions are each waiting for locks held by
the other to be released.

Definition of Deadlock

Time T17 T18 Lock

t1 begin_transaction

t2 writelock(balx) begin_transaction x

t3 read(balx) writelock(baly) x y

t4 balx:=balx-10 read(baly) x y

t5 write(balx) baly:=baly+100 x y

t6 writelock(baly) write(baly) x y

t7 WAIT writelock(balx) x y

t8 WAIT WAIT x y

t9 WAIT WAIT x y

t10 WAIT WAIT x y

t11 WAIT WAIT x y 3

• Only one way to break deadlock: abort one or
more of the transactions.

• If deadlock occurs then the DBMS will

– automatically abort one of the transactions;

– release its locks, which allows other
transactions to continue;

– restart the aborted transaction.

Breaking a Deadlock

4

• Three general techniques.

1. Timeouts.

2. Deadlock prevention.

3. Deadlock detection and recovery.

Handling Deadlock

5

• Transactions that request a lock will only wait for
a system-defined period of time.

• If a lock has not been granted within this period
then

– the lock request times out;

– the DBMS assumes that the transaction may
be deadlocked (even though it may not be);

– the transaction is aborted and automatically
restarted.

• Timeouts are a very simple and practical
solution to deadlock prevention.

Deadlock Timeouts

6

1 2

3 4

5 6

Lecture: Deadlock

Not to be reused without permission. © University of Salford 01/09/2023

Page 2

• DBMS looks ahead to see if a transaction would cause
deadlock and prevents deadlock from occurring.

• Could order transactions using transaction timestamps:
– Wait-Die: only an older transaction can wait for a

younger one.
• If a younger transaction requests a lock held by an

older one, then the younger one is aborted (dies)
and restarted with same timestamp, so it will
eventually become the oldest active transaction
and will not die.

– Wound-Wait: only a younger transaction can wait
for an older one.

• If an older transaction requests a lock held by a
younger one, then the younger one is aborted
(wounded).

Deadlock Prevention

7

Holding Requests Result

Younger Older Older
waits

Older Younger Younger
aborts
(dies)

Holding Requests Result

Younger Older Younger
aborts
(wounded)

Older Younger Younger
waits

Deadlock Prevention (continued)

Wait-Die vs Wound-Wait

8

Both schemes abort the younger of the two transactions that
may be involved in deadlock on the basis that this will waste
less processing.

• These techniques are deadlock free.

• In wait-die, transactions only wait for younger
transactions, so no cycle is created.

• In wound-wait, transactions only wait for older
transactions, so no cycle is created.

• However, both may cause some transactions to
be aborted and restarted needlessly, even
though those transactions may never actually
cause a deadlock.

Conclusion on wait-die and wound-wait

9

• DBMS allows deadlock to occur but then
recognizes it and breaks it.

• The DBMS usually uses a wait-for graph (WFG)
that shows transaction dependencies.

• A WFT is generated by creating:

– a node for each transaction;

– an edge Ti -> Tj, if Ti is waiting to lock an item
locked by Tj.

• Deadlock exists if, and only if, the WFG contains a
cycle.

• A WFG is created at regular intervals.

Deadlock Detection and Recovery

10

Wait-For-Graph (WFG) – Example One

Time T17 T18

t1 begin_transaction

t2 writelock(balx) begin_transaction

t3 read(balx) writelock(baly)

t4 balx:=balx-10 read(baly)

t5 write(balx) baly:=baly+100

t6 writelock(baly) write(baly)

t7 WAIT writelock(balx)

t8 WAIT WAIT

t9 WAIT WAIT

t10 WAIT WAIT

t11 WAIT WAIT
edge Ti -> Tj, if Ti waiting
to lock item locked by Tj

Trans-
action

Data items
locked by
transaction

Data
items is
waiting
for

T17 X Y

T18 Y X

11

Example Two

Transaction Data items
locked by
transaction

Data items is
waiting for

T1 G A

T2 A D E

T3 D E

T4 E F D A

T5 F G

edge Ti -> Tj, if Ti waiting to lock item locked by Tj

12

7 8

9 10

11 12

Lecture: Deadlock

Not to be reused without permission. © University of Salford 01/09/2023

Page 3

WFG for
Example Two

T1

T2 T3

T4

T5

G

A

A

E

D

E

D

F

13Deadlock exists because the WFG contains a cycle.

Transaction Data items
locked by
transaction

Data items
is waiting
for

T1 G A

T2 A D E

T3 D E

T4 E F D A

T5 F G

Example Three

Transaction Data items
locked by
transaction

Data items is
waiting for

T1 B A C

T2 C J G H

T3 H D E

T4 G A

T5 A E C

T6 D I F

T7 F E

edge Ti -> Tj, if Ti waiting to lock item locked by Tj

14

WFG for
Example Three

T1

T2 T3

T4

T5

T6

T7

F

C

H

G

D

E
A

C

A

E

15Deadlock exists because the WFG contains a cycle.

T Data items
locked by T

Data items
waiting for

T1 B A C

T2 C J G H

T3 H D E

T4 G A

T5 A E C

T6 D I F

T7 F E

There are several issues that the DBMS needs to
address.

• Selecting a deadlock victim that will minimize
the cost of breaking the deadlock.

– It may be better to abort a transaction that
has just started, rather than one that been
running for a long time.

– It may be better to abort a transaction that
has made little change to the database, rather
than one that has made significant change.

Recovery from Deadlock Detection

16

• Avoiding starvation.

– This occurs when the same transaction is
always chosen as the victim, preventing it
from ever completing.

– The DBMS may try to avoid this by storing a
count of the number of times a transaction
has been aborted.

Recovery from Deadlock Detection (continued)

17

• Deadlock is an impasse that may result when two (or
more) transactions are each waiting for locks held by
the other to be released.

• There are three general techniques for handling
deadlock:

1. Timeouts - simple and practical.

2. Deadlock prevention - may cause some
transactions to be aborted and restarted needlessly.

3. Deadlock detection (using WFG) and recovery.

Further Reading

• Section 22.2.4 of (Connolly & Begg, 2014).

• Section 18.2 of (Silberscatz et al., 2019).

Summary

18

13 14

15 16

17 18

Lecture: Database
Recovery: Part 1 Page 1

Not to be reused without permission. © University of Salford 01/09/2023

LECTURE:
DATABASE RECOVERY:
PART 1

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Recap: Data Storage

• What is recovery?

• Why is it needed?

• What facilities are needed to recover from a failure?

• What are the possible effects of failure?

• Buffers

• The DBMS recovery subsystem (i.e., the recovery
manager)

• The recovery log file

• Rules for recovery

• Summary

• Further reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

3

Recap: Data Storage

• Primary Storage - data is accessed directly by the CPU in
the form of main memory (or cache memory).

• Provides fast access.

• Has limited capacity.

• Is volatile (stored data is lost if power is cut).

• Secondary Storage - data is not directly accessed by the
CPU so it needs to be loaded into primary memory from
devices like magnetic disks.

• Slower access than primary storage.

• Has unlimited capacity.

• Is non-volatile (it retains stored data even if power is
cut).

• Usually the entire database is stored permanently on
secondary storage.

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Database recovery is the process of restoring
the database to a correct state after a failure.

What is recovery?

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Media failures
– E.g., hard disk head crashes.
– Results in loss of parts of secondary storage.

• System crashes
– Due to hardware or software errors.
– Results in loss of primary storage.

• Application software errors
– E.g., logical errors in programs that access the database.
– Causes one or more transactions to fail.

• Carelessness
– Unintentional destruction of data by users or operators.

• Sabotage
– Intentional corruption or destruction of data, hardware, or

software facilities.
• Natural physical disasters

– E.g., fires, floods, earthquakes, and power failure.

Types of Failures that Affect Databases

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

A DBMS should provide the following facilities to assist with
recovery.

• Log file (journal) - keeps track of the current state of
transactions and database changes.

• Backup mechanism - makes periodic copies of the
database and log file (journal) at regular intervals.

• Checkpoint facility - used to make the recovery more
efficient.

• The DBMS recovery subsystem (Recovery manager) -
allows the system to restore the database to a consistent
state following a failure.

What facilities are needed to recover?

6Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Lecture: Database
Recovery: Part 1 Page 2

Not to be reused without permission. © University of Salford 01/09/2023

• The database buffers occupy an area in primary storage
from which data is transferred to and from secondary
storage.

• Only when the buffers have been flushed to secondary
storage can any update operations be regarded as
permanent.

• Flushing can be triggered by:

– the transaction commit command;

– buffers becoming full.

Buffers

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1. Loss of primary storage, including database
buffers.

2. Loss of the copy of the database on secondary
storage.

• DBMS recovery subsystem uses techniques
that minimize these effects.

• In the remainder of this lecture we will refer to
the DBMS recovery subsystem as the recovery
manager.

What are the possible effects of failure?

8Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The recovery manager is responsible for ensuring the
atomicity and durability of transactions in the event of
failure.

– Atomicity: either all operations of a transaction are
performed or none.

• The recovery manager ensures that all the effects
of committed transactions reach the database, and
that the effects of any uncommitted transactions
are undone or ignored.

– Durability: effects of a committed transaction are
permanent.

• Effects must survive both loss of main memory
and loss of disk storage.

Atomicity and Durability

9Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• A transaction can commit once its writes are made to the
database buffers.

• Updates made to the buffer are not automatically written to
secondary storage (even for committed transactions).

• There may be a delay between committing and actual
writing to secondary storage.

– If system fails during this delay, the recovery manager
must ensure that these updates reach the copy of the
database on secondary storage.

• If a system failure occurs then the:

– database buffers are lost;

– the copy of the database on secondary storage
survives, but it may be incorrect.

Recovery Management
System Failure

10Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• To keep track of database transactions, the DBMS
maintains a specific file called a log (or journal).

• Two or three copies of the log file are kept on secondary
storage due to its importance in the recovery process.

• If the system fails, the log file is examined to see which
transactions to redo and/or which transactions to undo
or ignore.

• Several different protocols are used.
– We will study these in the next lecture.

Recovery Log File (or Journal)

11Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Transaction records contain:

• Transaction identifier.

• Type of log record:

– transaction start, insert, update, delete, abort,
commit.

• Identifier of data item affected by database action

– for insert, delete, and update operations.

• Before Image - value of the data item before the
operation of this log entry.

• After Image - value of the data item after the operation
of this log entry.

• Log management information.

• Checkpoint records.

What is stored in the recovery log file?

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Lecture: Database
Recovery: Part 1 Page 3

Not to be reused without permission. © University of Salford 01/09/2023

• Start_transaction(T)

– Records that transaction T starts execution.

• Write_item(T, X, old_value, new_value)

– Records that transaction T changes the value of
database item X from the before image
(old_value) to the new image (new_value).

• Read_item(T, X)

– Records that transaction T reads the value of
database item X.

– Not always logged.

What is entered into a log file?

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Commit (T)
– Records that transaction T has completed

all accesses to the database successfully
and its effect can be committed (recorded
permanently) to the database.

• Checkpoint
– There is also an additional entry to a log

known as a checkpoint.
• Used to make the recovery more

efficient.
• We will study checkpoints in the next

lecture.

What is entered into a log file? (continued)

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Transaction T1

Read(A)

A := A-50

Write(A)

Read(B)

B := B+50

Write(B)

Log Entry

<T1, start>

<T1, A, 1000, 950>

<T1, B, 2000, 2050>

<T1, commit>

Example 1

15Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Time T1 T2 T3

10:12 START

10:13 UPDATE

10:14 START

10:16 INSERT

10:17 DELETE

10:17 UPDATE

10:18 COMMIT START

10:19 COMMIT

10:20 INSERT

10:21 COMMIT

Example 2 – The Schedule

16Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Tid Time Operation Object Before After

T1 10:12 START

T1 10:13 UPDATE STAFF SL21 (old value) (new value)

T2 10:14 START

T2 10:16 INSERT STAFF SG37 (new value)

T2 10:17 DELETE STAFF SA9 (old value)

T2 10:17 UPDATE PROPERTY PG16 (old value) (new value)

T3 10:18 START

T1 10:18 COMMIT

10:19 CHECKPOINT T2, T3

T2 10:19 COMMIT

T3 10:20 INSERT PROPERTY PG4 (new value)

T3 10:21 COMMIT

Example 2 – A Complete Log File

17Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Identify transactions that were committed.

• Undo or ignore uncommitted transactions,
depending upon the protocol used.

• Redo committed transactions.

Recovery Rules

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Lecture: Database
Recovery: Part 1 Page 4

Not to be reused without permission. © University of Salford 01/09/2023

• If a transaction crash occurs the recovery
manager may undo transactions.

– Undoing a transaction means reversing the
operations of a transaction.

• This is achieved by examining the transaction log
and, for every write entry, setting the value of
item X in the database to the old value.

[write_item, T, X, old_value, new_value]

• Undoing a number of write item operations from
one or more transactions from the log must
proceed in the reverse order from the order in
which the operations were written in the log.

Undoing Transactions

19Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• For every write entry in the transaction log, the
value of item X in the database is set to the
new value.

[write_item, T, X, old_value, new_value]

• Redoing a number of write operations from one or
more transactions from the log must proceed in
the same order in which the operations were
written in the log.

Redoing Transactions

20Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Database recovery is the process of restoring the
database to a correct state after a failure.

• Failures can result in the loss of main memory and/or
the copy of the database on secondary storage.

• Recovery techniques minimise these effects.
• The DBMS maintains a log file containing transaction

records that identify the start and end of transactions
and the before and after images of the write operations.

• If the system fails, the log file is examined to see which
transactions to redo and which transactions to undo or
ignore.

• Uncommitted transactions are undone or ignored,
depending upon the protocol used.

• Committed transactions are redone.

Summary

21Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Section 22.3 of (Connolly & Begg, 2014), except
for Section 22.3.5.

• Chapter 19 of (Silberscatz et al., 2019),
specifically Sections 19.1, 19.2, 19.3 and 19.4.

Further Reading

22Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

19 20

21 22

Lecture: Database
Recovery: Part 2 Page 1

Not to be reused without permission. © University of Salford 01/09/2023

LECTURE:
DATABASE RECOVERY:
PART 2

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Recap on undoing and redoing transactions.

• Two protocols for recovery.

1. Deferred Update Protocol

2. Immediate Update Protocol

• Checkpoints

– Definition, motivation, and what they involve.

– Comparison of schedules with and without checkpoints.

– Recovery involving checkpoints.

• Shadow Paging

• Summary

• Further reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• If a transaction crash occurs the recovery
manager may undo transactions.

– Undoing a transaction means reversing the
operations of a transaction.

• This is achieved by examining the transaction log
and, for every write entry, setting the value of
item X in the database to the old value.

[write_item, T, X, old_value, new_value]

• Undoing a number of write item operations from
one or more transactions from the log must
proceed in the reverse order from the order in
which the operations were written in the log.

Recap: Undoing Transactions

3Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• For every write entry in the transaction log, the
value of item X in the database is set to the
new value.

[write_item, T, X, old_value, new_value]

• Redoing a number of write operations from one or
more transactions from the log must proceed in
the same order in which the operations were
written in the log.

Recap: Redoing Transactions

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Updates are not written to the database until
after a transaction has reached its commit
point.

• If a transaction fails before committing, then it will
not have modified the database and, therefore, no
undoing of changes is required.

• It may be necessary to redo updates of committed
transactions as their effect may not have reached
database.

• This is called a “redo/no undo” method since we
redo committed transactions and do not undo
anything.

Deferred Update Protocol

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Redo a transaction if both <Ti start> and
<Ti commit> are present in the log.

Deferred Update Protocol
Recovery Procedure

6Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Lecture: Database
Recovery: Part 2 Page 2

Not to be reused without permission. © University of Salford 01/09/2023

Transaction T0

read(A)
A := A - 50
write(A)
read(B)
B := B + 50
write(B)

Transaction T1

read(C)
C := C - 100
write(C)

Example

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Recovery actions for the following three log files.
– These show the contents of a log file assuming the DBMS

crashed at a different point each time.

• Case (a): None
• Case (b): Redo T0: A950, B2050
• Case (c): Redo T0 and T1: A950, B2050, C600

Applying Deferred Update Protocol to the
Example

8

Case (a) Case (b) Case (c)

<T0,start> <T0,start> <T0,start>

<T0,A,1000,950> <T0,A,1000,950> <T0,A,1000,950>

<T0,B,2000,2050> <T0,B,2000,2050> <T0,B,2000,2050>

<T0,commit> <T0,commit>

<T1,start> <T1,start>

<T1,C,700,600> <T1,C,700,600>

<T1,commit>

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Updates are applied to the database as they occur.

• Following a failure:

– need to redo updates of committed transactions;

– may need to undo effects of transactions that had not
been committed.

• If there is no “commit” record for a transaction in
the log, then that transaction was active at the point
of failure and must be undone.

– Undo operations are performed in reverse order in
which they were written to log.

• In recovery, use the log to undo or redo transactions,
making this a “redo/undo” protocol.

Immediate Update Protocol

9Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Undo

• If <Ti,start> is in the log but <Ti,commit> is not then
restore the value of all data items updated by Ti to their
old values, going backwards from the last log record for
Ti.

Redo

• If <Ti,start> and <Ti,commit> are both in the log then
set the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti.

Immediate Update Protocol Recovery
Procedure

10Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Recovery actions for the following three log files.
– These show the contents of a log file assuming the

DBMS crashed at a different point each time.
• Case (a): Undo T0: B2000, A 1000
• Case (b): Redo T0, Undo T1: A950, B2050, C700
• Case (c): Redo T0, Redo T1: A950, B2050, C600

Applying the Immediate Update Protocol
to the Example.

11

Case (a) Case (b) Case (c)

<T0,start> <T0,start> <T0,start>

<T0,A,1000,950> <T0,A,1000,950> <T0,A,1000,950>

<T0,B,2000,2050> <T0,B,2000,2050> <T0,B,2000,2050>

<T0,commit> <T0,commit>

<T1,start> <T1,start>

<T1,C,700,600> <T1,C,700,600>

<T1,commit>

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• After a failure, we may not know how far back in
the log to search to redo transactions.

• Checkpoints can limit log searching.

• A checkpoint is created automatically by the
DBMS.

• The creation of checkpoints is scheduled at
predetermined intervals.

• Definition: Checkpoints are points of
synchronization between the database and the
log file. All buffers are written to secondary
storage.

Checkpoints

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Lecture: Database
Recovery: Part 2 Page 3

Not to be reused without permission. © University of Salford 01/09/2023

A checkpoint involves the following steps:

1) Write the following to secondary storage:
– all log records;

– all modified buffer blocks to the database (do
not discard buffers);

– a “checkpoint” record to the log file which
contains the identities of all transactions that are
active at the time of the checkpoint.

2) Resume transaction processing.

What does checkpointing involve?

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Deferred
• Any transaction that

committed before the latest
checkpoint is stored
permanently.

• Ignore any transaction that
was active at the point of
failure.

• Redo any transaction that
was active at the checkpoint
(provided it later committed).

• Redo any transaction that
started after the checkpoint
(provided it later committed).

Immediate
• Any transaction that

committed before the latest
checkpoint is stored
permanently.

• Undo any transaction that
was active at the point of
failure.

• Redo any transaction that
was active at the checkpoint
(provided it later committed).

• Redo any transaction that
started after the checkpoint
(provided it later committed).

Checkpoints and the Protocols

In case of a failure, check the log and…

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• DBMS starts at time t0, but fails at time tf.

• T1 and T6 have to be undone.

• In the absence of any other information, the recovery
manager has to redo T2, T3, T4, and T5.

Example one (no checkpoints) [immediate]

15

T1

T2

T3

T4

T5

T6

tf
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Example two (serial with checkpoint) [immediate]

16

• Dotted lines represent checkpoints.

• T1 is safe because the updates have already written to
disk due to checkpoint at tc.

• T4 needs to be undone.

• T2 and T3 need to be redone.

T1

T2

T3

T4

tftc
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Example three (concurrent with checkpoint)
[immediate]

17

• T2 and T3 are safe because the updates have already
written to disk due to checkpoint at tc.

• T1 and T6 needs to be undone.

• Since there is a checkpoint, the recovery manager has
to redo only T4, and T5.

T1

T2

T3

T4

T5

T6

tc tf
Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Scan log backwards.
• Create undo and redo lists.
• Undo list: A list of transactions that were active at

the time of the crash.
– Perform undo(T) for every transaction in undo-

list.
– Stop when reach <T, start> for every T in undo-

list.
• Redo list: A list of transactions that committed after

the last checkpoint.
– Perform redo for each log record that belongs to

a transaction on the redo-list.

How the Recovery Log File is Used

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Lecture: Database
Recovery: Part 2 Page 4

Not to be reused without permission. © University of Salford 01/09/2023

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, D, 0, 10>
<T3 commit>
Crash!!!!

• Safe list: T0

• Undo list: T1, T2

– C: 2010

– C: 100

– B: 100

• Redo list: T3

– D: 010

Example of How the Log is Used.

Example uses the immediate update protocol.

19

A B C D

Initial 0 0 0 0

Crash (mem) 10 10 20 10

Recovered 10 0 0 10

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Shadow Paging is an alternative technique for
providing atomicity and durability.

• DBMS maintains two page tables during the life
of a transaction.

1. Current Page

2. Shadow Page table.

Shadow Paging

20Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Transaction start: the two pages are the same.
– The shadow page table is never changed. It will only be

used to restore database in event of failure.

• Transaction execution: the current page table
records all updates to database.

• Transaction end: the current page table becomes
the shadow page table and all modified pages
from the database buffers are saved to the
secondary storage.

• Transaction failure: new pages are ignored and
the shadow page table becomes the current page
table.

Shadow Paging (continued)

21Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Protocols for recovery include:

– Deferred Update Protocol (a “redo/no undo” method)

– Immediate Update Protocol (a “redo/undo” method)

• Checkpoints are used to improve database recovery.

• Shadow Paging is an alternative technique for providing
atomicity and durability.

Summary

22Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Section 22.3 of (Connolly & Begg, 2014), except
for Section 22.3.5.

• Chapter 19 of (Silberscatz et al., 2019),
specifically Sections 19.1, 19.2, 19.3 and 19.4.

Further Reading

23Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

19 20

21 22

23

Page 1
Lecture: Security

Not to be reused without permission. © University of Salford 01/09/2023

LECTURE:
DATABASE SECURITY

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Database Security
• Threats to Databases
• Non Computer-Based Controls
• Computer-Based Controls
• Authorisation
• Authorisation Grant Graph
• Views
• Privileges in SQL
• Roles
• Summary
• Further Reading

Contents

2

• Definition: The mechanisms that protect the database
against threats.

• Why?
– Data is a valuable resource that must be strictly

controlled and managed.
– Part of or all the corporate data may have strategic

importance and therefore needs to be kept secure and
confidential.

• How?
– Protection of the database against intentional or

unintentional threats using computer-based or non-
computer-based controls.

– Security considerations do not only apply to the data
held in a database. Breaches of security may affect other
parts of the system, which may in turn affect the
database.

Data Security

3

• Accidental loss due to:
– Human error

– Software failure

– Hardware failure

• Theft, fraud and sabotage

• Improper data access
– Loss of privacy (personal data)

– Loss of confidentiality (corporate data)

• Loss of data integrity

• Loss of availability

Threats to databases

4

• Non computer-based controls can also be
employed to enforce data security.

• These include policies, agreements, and other
administrative controls, such as:

– Security policy and contingency plan

– Personnel controls

– Secure positioning of equipment

– Maintenance agreements

– Physical access controls

Non Computer-Based Controls

5

• Backup: Process of periodically taking a copy of the
database and log file (and possibly programs) to offline
storage media.

• Journaling: Process of keeping and maintaining a log file
(or journal) of all changes made to the database to enable
effective recovery in event of failure.

• Checkpointing: Point of synchronization between the
database and the transaction log file. All buffers are force-
written to secondary storage.

• Integrity: Prevents data from becoming invalid, hence
giving misleading or incorrect results.

• Encryption: The encoding of the data by a special
algorithm that renders the data unreadable by any
program without the decryption key.

Computer-Based Controls

6

1 2

3 4

5 6

Page 2
Lecture: Security

Not to be reused without permission. © University of Salford 01/09/2023

• Authorisation: The granting of a right or
privilege, which enables a subject to legitimately
have access to a system or a system’s object.

• Authentication: A mechanism that determines
whether a user is who they claim to be.

• Views: The dynamic result of one or more
relational operations on the base relations to
produce another relation.

More Computer-Based Controls

7

There are different forms of authorisation than can
be defined at the schema level in most DBMSs.

These include:

• Resources authorisation: allows the creation of
new relations.

• Alteration authorisation: allows the addition or
deletion of attributes in a relation.

• Index authorisation: allows creation and deletion
of indexes.

• Drop authorisation: allows deletion of relations.

Authorisation for Schemas

8

There are a number of different authorisation types
that can be enforced on data stored in databases.

These include:

• Read authorisation: allows read only access.

• Insert authorisation: allows insertion of new
data.

– does not include modification of existing data.

• Update authorisation: allows modification of
existing data.

– does not include deletion of data.

• Delete authorisation: allows deletion of data.

Authorisation Types for Data

9

• The passage of authorisation from one user to another
may be represented by an authorisation graph.

• The nodes of this graph are the users.

• The root of the graph is the database administrator.

• An edge Ui Uj indicates that user Ui has granted
authorisation for a specific transaction to Uj.

• All edges must be part of some path originating with the
database administrator.

Authorisation Grant Graph

U1 U4

U2
U5

U3

DBA

10

If DBA revokes authorisation from U1

– then authorisation must be revoked from U4 because
U1 no longer has authorisation;

– but authorisation must not be revoked from U5 because
U5 has another authorisation path from DBA through
U2.

Authorisation Grant Graph (continued)

11

U1 U4

U2
U5

U3

DBA

• Cycles of grants with no path from the root should be
prevented.

– If the DBA revokes authorisation from U7

– then must revoke grant U7 to U8 and from U8 to U7 since
there is no path from DBA to U7 or to U8 anymore.

Ensuring all edges are on a path from the DBA.

12

U7 U8
DBA

U7 U8
DBA

U7 U8
DBA

7 8

9 10

11 12

Page 3
Lecture: Security

Not to be reused without permission. © University of Salford 01/09/2023

• A view is like a window through which data can be seen.
• The creation of a view does not require significant amounts of

memory (to permanently store data) because it is not a new
relation.

• Views are extremely useful in restricting access to data.
• Users can be given authorisation on views, without being

given any authorisation on the relations used in the view
definition.

• The ability of views to hide data serves to:
– simplify usage of the system;
– enhance security by allowing users access only to data

they need for their job.
• A combination of relational-level security and view-level

security can be used to limit a user’s access to precisely the
data that user needs.

• To create a view, a user must have read authorisation on all
the relations that a view accesses.

• When a view is created, its creator does not get any additional
access beyond what s/he already had.

View

13

• Suppose a bank clerk needs to know the names of the
customers that have a loan and which branch they bank
with, but is not authorised to see specific loan information.

• Approach:
1. Deny the bank clerk direct access to the loan relation.

2. Create a view that provides only the necessary
information.

E.g. names of customers and the branches at which
they have a loan.

CREATE VIEW cust-loan AS

SELECT branchname, customer-name

FROM borrower, loan

WHERE borrower.loan-number = loan.loan-num

3. Grant the bank clerk access to the view.

Example of a View

14

• The clerk is now authorized to see the result of a query
on the view:

SELECT *

FROM cust-loan

• If the creator of the cust-loan view had only read
authorisation on borrower and loan, then the creator will
only have read authorisation on the view.

Example of a View (continued)

15

GRANT <privilege list>
ON <relation name or view name>
TO <user list>
• The GRANT statement is used to confer authorisation.
• Lists the privileges to be granted.
• Specifies the relation or view that will be affected.
• Stipulates who is being authorized. This could be one of:

– a user-id
– PUBLIC

• which allows all valid users the privilege granted
– a role (more on this later)

• Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

• The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

Granting Privileges in SQL

16

The privilege list may include

• SELECT - allows read access to relation, or the ability to query
using the view, e.g.,

GRANT SELECT

ON branch

TO U1, U2, U3

• INSERT [List of columns] – allows use of SQL INSERT INTO
statement.

• UPDATE [List of columns] - allows use of SQL UPDATE
STATEMENT.

• DELETE: allows tuples to be deleted.

• REFERENCES [List of columns]: allows foreign keys to be
declared when creating relations.

• ALL PRIVILEGES: used as a short form for all them.

Privileges in SQL

17

• You can also allow a user who is granted a
privilege to pass the privilege on to other users.
E.g.,

GRANT SELECT
ON branch
TO U1
WITH GRANT OPTION

• Gives U1 the select privilege on branch and
allows U1 to grant this privilege to others.

Allowing a User to Grant Privileges

18

13 14

15 16

17 18

Page 4
Lecture: Security

Not to be reused without permission. © University of Salford 01/09/2023

• The REVOKE statement is used to remove authorisation.
• It lists the privileges to be revoked.
• If the list contains ALL, then all privileges will be removed from

the specified user(s).
• Specifies the relation or view that will be affected.

REVOKE <privilege list>
ON <relation name or view name>
FROM <user list>
[RESTRICT | CASCADE]

E.g., REVOKE SELECT
ON branch
FROM U1, U2, U3
CASCADE

Revoking Privileges in SQL

19

• If the same privilege was granted twice to the same user by
different grantors, the user may retain the privilege after
revoking. E.g., see slide 11.

• All privileges that depend solely on the privilege being revoked
are also revoked.

• If revoking a privilege from a user causes other users to lose
that privilege then the revoke is said to be cascaded.

• You can prevent cascading by specifying restrict. E.g.,
REVOKE SELECT
ON branch
FROM U1, U2, U3
RESTRICT

• With restrict, the revoke command fails if cascading revokes
are required.

• If <user list> includes public all users lose the privilege, except
those granted it explicitly.

Revoking Privileges in SQL (continued)

20

• Suppose that User A1 creates the two relations
EMPLOYEE and DEPARTMENT.

– A1 is then owner of these two relations and hence all
the relation privileges on each of them.

• Suppose that A1 wants to grant A2 the privilege to insert
and delete tuples in both of these relations, but A1 does not
want A2 to be able to propagate these privileges to
additional accounts.
GRANT INSERT, DELETE ON EMPLOYEE TO A2;
GRANT INSERT, DELETE ON DEPARTMENT TO A2;

Privileges in SQL - Example 1

21

• Suppose that A1 wants to allow A3 to retrieve
information from either of the two tables and also to be
able to propagate the SELECT privilege to other
accounts.

• A1 can issue the commands:
GRANT SELECT ON EMPLOYEE TO A3 WITH GRANT
OPTION;

GRANT SELECT ON DEPARTMENT TO A3 WITH
GRANT OPTION;

• A3 can then grant the SELECT privilege on the
EMPLOYEE relation to A4.
GRANT SELECT ON EMPLOYEE TO A4;

Privileges in SQL - Example 2

22

• Suppose that A1 decides to revoke the SELECT
privilege on the EMPLOYEE relation from A3.
REVOKE SELECT ON EMPLOYEE FROM A3;

• The DBMS must now automatically revoke the SELECT
privilege on EMPLOYEE from A4 too

– because A3 granted that privilege to A4 and A3 does
not have the privilege any more.

Privileges in SQL – Example 3

23

• Suppose that A1 wants to

– give A3 a capability to SELECT just the Name, Bdate,
and Address attributes from the EMPLOYEE relation for
tuples with Dno=5.

– allow A3 to be able to propagate the privilege.

• A1 creates the view:
CREATE VIEW A3EMPLOYEE AS

SELECT Name, Bdate, Address

FROM EMPLOYEE

WHERE Dno = 5;

• A1 then grants SELECT on the view A3EMPLOYEE to A3.
GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT
OPTION;

Privileges in SQL – Example 4

24

19 20

21 22

23 24

Page 5
Lecture: Security

Not to be reused without permission. © University of Salford 01/09/2023

• Finally, suppose that A1 wants to allow A4 to update
only the SALARY attribute of EMPLOYEE.

• A1 does
GRANT UPDATE (Salary) ON EMPLOYEE TO
A4;

• The UPDATE or INSERT privilege can specify
particular attributes that may be updated or inserted
in a relation
– Other privileges (SELECT, DELETE) are not

attribute specific.

Privileges in SQL – Example 5

25

• Roles permit common privileges for a class of
users to be specified just once by creating a
corresponding role.

• Privileges can be granted to or revoked from
roles, just like users.

• Roles can be assigned to users, and even to
other roles.

• SQL:1999 supports roles.

Roles

26

CREATE ROLE teller;

CREATE ROLE manager;

GRANT SELECT ON branch TO teller;

GRANT UPDATE (balance) ON account TO teller;

GRANT ALL PRIVILEGES ON account TO manager;

GRANT teller TO manager;

GRANT teller TO alice, bob;

GRANT manager TO avi;

Roles in SQL

27

• SQL does not support authorisation at a tuple level.
– E.g., we cannot restrict students to see only the tuples

storing their own grades.

• All end-users of an application (such as a web
application) may be mapped to a single database
user.

• The task of authorisation in above cases falls on
the application program, with no support from SQL.
– authorisation must be done in application code, and

may be dispersed all over an application.

– Checking for absence of authorisation loopholes
becomes very difficult since it requires reading large
amounts of application code.

Limitations of SQL Authorisation

28

• Database security is concerned with the
mechanisms that protect the database against
threats.

• A threat is any situation or event, whether
intentional or unintentional, that may adversely
affect a system and consequently an organization.

• Computer-based security controls for the multi-
user environment include backup and recovery,
integrity, encryption, authorisation, authentication
and views.

• SQL supports some forms of authorisation.

Summary

29

• Chapter 5 of (Connolly & Begg, 2004)

• Sections 20.1 and 20.2.1 of (Connolly & Begg,
2014)

• Sections 4.7 of (Silberscatz et al., 2019)

Further Reading

30

25 26

27 28

29 30

Page 1
Lecture: Security: SQL Injection

Not to be reused without permission. © University of Salford 01/09/2023

LECTURE:
DATABASE SECURITY:
SQL INJECTION

Database Systems, Semester 2

Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023. 1

• Media Coverage

• What is an SQL Injection Attack?

• How does it work?

• How to avoid it.

• Disclaimer

• Summary

• Further Reading

Contents

2Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• SQL injection was documented as a security threat in 1998,
but new incidents still occur every month.

• Yahoo! Voices was hacked in July 2012.

– The attack acquired 453,000 user email addresses and
passwords.

– The perpetrators claimed to have used union-based SQL
injection to break in.
http://en.wikipedia.org/wiki/2012_Yahoo!_Voices_hack

• LinkedIn.com leaked 6.5 million user credentials in June
2012.

– A class action lawsuit alleges that the attack was
accomplished with SQL injection.

– http://privacy-pc.com/news/linkedin-is-hacked-russian-
hacker-steals-6-5-million-linkedin-passwords.html

Media Coverage of SQL Injection

3Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• High-profile attack in Canada in 2014 resulting in the
leak of over 40,000 records from Bell.

• The original information leaked by the attackers
suggested that SQL injection had played a prominent
role in the breach.

• Now there is conclusive evidence of it.

• http://www.troyhunt.com/2014/02/heres-how-bell-was-
hacked-sql-injection.html

• http://o.canada.com/technology/bell-canada-security-
breach-391451

Media Coverage of SQL Injection (continued)

4Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• SQL injection is a technique whereby a malicious

attacker can exploit inadequate data validation to

inject arbitrary SQL code into an application's queries

and have it executed as though it is a legitimate query.

• Every web application developer should know how to

write secure code that is not vulnerable to it.

What is SQL Injection?

5Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Many (web) applications take user input from a form.

• Often this user input is used literally in the construction

of a SQL query submitted to a database.

• An SQL injection attack involves placing SQL

statements in the user input, hoping they will reach the

database server and be executed alongside the original

query.

How does SQL Injection work?

6Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

1 2

3 4

5 6

Page 2
Lecture: Security: SQL Injection

Not to be reused without permission. © University of Salford 01/09/2023

• Consider the case of a simple login form.

• The user is asked to enter a username and password that
are allocated in two variables in the application, e.g.
$username and $password

• The application is using these two variables to generate the
string for an SQL query like
$sql = "SELECT * FROM users WHERE username =
'" . $username . "' AND password = '" .
$password . "'";

• This would result in the following query
SELECT * FROM users WHERE username = 'fred'
AND password = 'Fr3dRul3z’

• If a row exists in the database with these credentials, then
the user is allowed to log in.

SQL Injection and Simple Login Forms

7Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• An attacker could easily circumvent this authentication
scheme by escaping out of the username field into the
SQL query by entering nothing into the password field
and this into the username field:

' OR 1=1 --

– Which would select all users from the database: the
condition 1=1 will always be true.

– The rest of the query is discarded with the comment
operator '--'.

Example

8Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• With valid data the query would look like

SELECT * FROM users WHERE username = 'fred'
AND password = 'Fr3dRul3z'

• When using ' OR 1=1 -- instead of fred you think
the query will look like

SELECT * FROM users WHERE username = '' OR
1=1 -- ' AND password = 'Fr3dRul3z'

• But what the database server sees is

SELECT * FROM users WHERE username = '' OR
1=1 -- ' AND password = 'Fr3dRul3z'

• …which is always true!

Example (continued)

9Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• With valid data the query would look like

SELECT prodinfo FROM prodtable WHERE prodname =
'dvd’

• When using

dvd'; DROP TABLE prodtable; --

instead of dvd you think the query will look like

SELECT prodinfo FROM prodtable WHERE prodname =
'dvd'; DROP TABLE prodtable; -- '

• But what the database server sees is

SELECT prodinfo FROM prodtable WHERE prodname =
'dvd'; DROP TABLE prodtable; -- '

• …which will remove the whole products table!

A (Worse) Example

10Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The way to avoid this kind of attack is to sanitise the user

provided data.

• This can be achieved by ensuring any application is

escaping every character that could be misused in the

DBMS.

• Doing this is extremely tricky since most of the time

application developers are not database experts.

• Also every time a new vulnerability is detected in a DBMS,

all applications interfacing with it need updating.

The supposedly easy (but actually hard) way
to avoid SQL injection.

11Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The best way to avoid this, is by using prepared

statements (also referred to as parameterised

queries).

• This is supported by all major DBMSs.

– MySQL, Oracle, Microsoft SQL Server, DB2,

PostgreSQL

• This is supported by all major programming languages.

– Java JDBC, Perl DBI, PHP PDO, Python DB-API

Using Prepared Statements

12Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

7 8

9 10

11 12

Page 3
Lecture: Security: SQL Injection

Not to be reused without permission. © University of Salford 01/09/2023

• Using this approach, the query is defined without
concatenating any user input, e.g.

SELECT * FROM users WHERE username = ?
AND password = ?

• The query is sent to the DBMS along with the values for
two (SQL) variables.

• The values of the two variables will be automatically
used in the place of the ?

• The major advantage is that the DBMS will sanitise the
content of variables using its own resources.

• Whenever a new way of abusing the values of these
variables is discovered, all applications can be made
safe by updating the DBMS.

Using Prepared Statements (continued)

13Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Even when using prepared statements
(parameterised queries), there are some types of
input that can not be automatically sanitised.

• Consider the following
SELECT * FROM mytable WHERE id = 23

• If the value 23 is changed to 23 OR 1=1 then
the query becomes:
SELECT * FROM mytable WHERE id = 23 OR 1=1

• This can not be avoided automatically since there
are no characters that need escaping!

Some types of input cannot be
automatically sanitised.

14Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

Apart from using parameterised queries, applications
should also:

• Check syntax of input for validity.

– Many types of input have fixed formats.

– E.g., email addresses, dates, part numbers, etc.

• Verify that the input is a valid string in its context.

• If possible, exclude quotes and semicolons.

– Not always possible: consider the name Bill O’Reilly.

• Have length limits on input.

– Many SQL injection attacks depend on entering long
strings.

A Stronger Defence

15Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• Using SQL injections, attackers can:

– Add new data to the database.

– Modify data currently in the database.

– Delete data from the database.

– Often can gain access to the system capabilities of
other Users by obtaining their password.

Other Types of Abuse

16Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• The purpose of showing these attacks is to teach you

how to prevent them.

• Established websites are already hardened to this type

of attack.

– And are monitoring to detect attempts!

• Attempting to break into someone else’s database is

illegal and unethical.

• Do not use your powers for evil.

Disclaimer

17Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

• SQL injection is a technique whereby a malicious
attacker can exploit inadequate data validation to inject
arbitrary SQL code into an application's queries and
have it executed as though it is a legitimate query.

• An SQL injection attack involves placing SQL
statements in the user input, hoping they will reach the
database server and be executed alongside the original
query.

• The best way to avoid this, is by using prepared
statements (also referred to as parameterised
queries).

Summary

18Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

13 14

15 16

17 18

Page 4
Lecture: Security: SQL Injection

Not to be reused without permission. © University of Salford 01/09/2023

• Section 9.8.1 of (Silberscatz et al., 2019)

Further Reading

19Dr C.H. Bryant, School of SEE. Not to be reused without permission. © University of Salford 2023.

19

