vault backup: 2025-03-16 18:59:42
This commit is contained in:
@@ -0,0 +1,44 @@
|
||||
1. George Boole
|
||||
2. Truth Tables for a) Negation b) Contraposition
|
||||
|
||||
a)
|
||||
Negation Law
|
||||
¬¬p ≡ p
|
||||
|
||||
| p | ¬p | ¬(¬p) | ¬(¬p) ⇔ p |
|
||||
| --- | --- | ----- | --------- |
|
||||
| T | F | T | T |
|
||||
| F | T | F | T |
|
||||
|
||||
b)
|
||||
|
||||
Contraposition Law
|
||||
p ⇒ q ≡ ¬q ⇒ ¬p
|
||||
|
||||
| p | ¬p | q | ¬q | p ⇒ q | ¬q ⇒ ¬p | p ⇒ q ⇔ ¬q ⇒ ¬p |
|
||||
| --- | --- | --- | --- | ----- | ------- | --------------- |
|
||||
| T | F | T | F | T | T | T |
|
||||
| T | F | F | T | F | F | T |
|
||||
| F | T | T | F | T | T | T |
|
||||
| F | T | F | T | T | T | T |
|
||||
|
||||
p ⇒ q ⇔ ¬q ⇒ ¬p MUST be true, since p ⇒ q and ¬q ⇒ ¬p are shown in the truth table to be the same logical equivalence
|
||||
|
||||
1. Provide names of laws
|
||||
1. Negation Law
|
||||
2. De Morgan's Law
|
||||
3. Negation Law
|
||||
4. De Morgan's Law
|
||||
5. Negation Law Twice
|
||||
6. Associative Law
|
||||
7. De Morgan's Law
|
||||
8. De Morgan's Law
|
||||
9. Negation Law Twice
|
||||
2. Show logical equivalence
|
||||
p ⇒ q
|
||||
¬q ⇒ ¬p
|
||||
p ⇒ q
|
||||
≡ (¬p) v q
|
||||
≡ q v (¬p)
|
||||
≡ ¬ (¬q) v (¬p)
|
||||
≡ (¬q) ⇒ (¬p)
|
Reference in New Issue
Block a user