vault backup: 2025-03-16 18:59:42
This commit is contained in:
@@ -0,0 +1,53 @@
|
||||
1. A syllogism is an instance of a form of reasoning in which a conclusion is drawn from two given or assumed propositions; a common or middle term is present in the two premises but not in the conclusion, which may be invalid.
|
||||
2. Aristotle
|
||||
|
||||
**Double Negation ¬ Elim ¬ ¬ p p**
|
||||
|
||||
| Propositions | Premises | Conclusion |
|
||||
| ------------ | ------------ | ---------- |
|
||||
| p | $\neg\neg p$ | p |
|
||||
| T | T | T |
|
||||
| F | F | F |
|
||||
|
||||
**Hypothetical syllogism; this says that if p implies q and q implies r, then it can be logically concluded that p implies r. p ⇒ q q ⇒ r p ⇒ r**
|
||||
|
||||
| Propositions | | | Premises | | Conclusion |
|
||||
| ------------ | --- | --- | -------------- | -------------- | -------------- |
|
||||
| p | q | r | $p \implies q$ | $q \implies r$ | $p \implies r$ |
|
||||
| T | T | T | T | T | T |
|
||||
| T | T | F | T | F | |
|
||||
| T | F | T | F | T | |
|
||||
| T | F | F | F | T | |
|
||||
| F | T | T | T | T | T |
|
||||
| F | T | F | T | F | |
|
||||
| F | F | T | T | T | T |
|
||||
| F | F | F | T | T | T |
|
||||
|
||||
1. Involves linking implications together in a sequential manner, much like the links in a chain.
|
||||
|
||||
**p ∨ q q Therefore, p**
|
||||
|
||||
| Propositions | | Premises | | Conclusion |
|
||||
| ------------ | --- | ---------- | --- | ---------- |
|
||||
| $p$ | $q$ | $p \lor q$ | $q$ | p |
|
||||
| T | T | T | T | T |
|
||||
| T | F | T | F | T |
|
||||
| F | T | T | T | F |
|
||||
| F | F | F | F | F |
|
||||
|
||||
**p ⇒ q q ⇒ p Therefore, p ∧ q**
|
||||
|
||||
| Propositions | | Premises | | Conclusion |
|
||||
| ------------ | --- | -------------- | -------------- | ----------- |
|
||||
| p | q | $p \implies q$ | $q \implies p$ | $p \land q$ |
|
||||
| T | T | T | T | T |
|
||||
| T | F | F | T | F |
|
||||
| F | T | T | F | F |
|
||||
| F | F | T | T | F |
|
||||
|
||||
$p \implies q$
|
||||
$r \implies s$
|
||||
$p \lor r$ (p disjunction (or) r)
|
||||
Conclusion: $q \lor s$
|
||||
|
||||
The "Constructive Dilemma": If the disjunction of the antecedent of two implications holds then the disjunction of the conclusions also must hold
|
||||
163
AI & Data Mining/Week 22/Week 22 Validity and Inference Rules.md
Normal file
163
AI & Data Mining/Week 22/Week 22 Validity and Inference Rules.md
Normal file
@@ -0,0 +1,163 @@
|
||||
|
||||
|
||||
**Detailed Notes on Lectures 9 & 10: Validity and Inference Rules**
|
||||
|
||||
**Slide 1: Learning Objectives**
|
||||
- Define the notion of validity in an argument.
|
||||
- Establish validity using truth tables.
|
||||
- Demonstrate invalidity using truth tables.
|
||||
- Understand inference rules.
|
||||
|
||||
**Slide 2: Contents**
|
||||
- Objectives
|
||||
- Transformational proofs are not sufficient.
|
||||
- Comparison of deduction with induction.
|
||||
- Validity.
|
||||
- Demonstrating validity/invalidity using truth tables.
|
||||
- Problem with truth tables.
|
||||
- Inference rules.
|
||||
- Summary, reading, and references.
|
||||
|
||||
**Slide 3: Transformational Proofs do not Suffice**
|
||||
- Understanding transformations of formulas is useful but insufficient.
|
||||
- Logic uses rules of inference to deduce true propositions from other true propositions.
|
||||
- Invalid premises cannot lead to valid conclusions, preventing proofs of contradictions or useless systems.
|
||||
|
||||
**Slide 4: Premises and Conclusions**
|
||||
- An argument consists of premises (basis for accepting) and a conclusion.
|
||||
- Example:
|
||||
- Premises: Every adult is eligible to vote; John is an adult.
|
||||
- Conclusion: Therefore, John is eligible to vote.
|
||||
|
||||
**Slide 5: Deduction vs. Induction**
|
||||
- Deductive arguments: Conclusion is wholly justified by premises.
|
||||
- Inductive arguments: More general new knowledge inferred from facts or observations.
|
||||
|
||||
**Slide 6: Valid vs. Invalid Arguments**
|
||||
- Valid arguments: Conclusion always true when premises are true.
|
||||
- Invalid arguments: At least one assignment where premises are true, but conclusion is false.
|
||||
|
||||
**Slide 7: Example of Valid Argument**
|
||||
- If John is an adult, then he is eligible to vote (premise).
|
||||
- John is an adult (premise).
|
||||
- Therefore, John is eligible to vote (conclusion).
|
||||
|
||||
**Slide 8: Example of Valid Argument with False Conclusion**
|
||||
- If I catch the 19:32 train, I'll arrive in Glasgow at 19:53 (premise).
|
||||
- I catch the 19:32 train (premise).
|
||||
- Therefore, I arrive in Glasgow at 19:53 (conclusion) – Factually false but valid argument.
|
||||
|
||||
**Slide 9: Example of Invalid Argument**
|
||||
- If I win the lottery, then I am lucky (premise).
|
||||
- I do not win the lottery (premise).
|
||||
- Therefore, I am unlucky (conclusion) – Invalid argument with factually true premises and conclusion.
|
||||
|
||||
**Slide 10: Demonstrating Validity Using Truth Tables**
|
||||
- View argument as implication (p ⇒ q).
|
||||
- If premises entail conclusion, then argument is valid.
|
||||
|
||||
**Slide 12: Demonstrating Validity Using Truth Table (Example)**
|
||||
- Argument: If John is an adult, then he is eligible to vote; John is an adult; Therefore, John is eligible to vote.
|
||||
- Atomic Propositions: p (John is an adult), q (John is eligible to vote).
|
||||
|
||||
| p | q | p ⇒ q | p ∧ q |
|
||||
|---|---|------|-------|
|
||||
| T | T | T | T |
|
||||
| F | T | F | F |
|
||||
|
||||
- Argument is valid because conclusion (q) is always true when premises are true.
|
||||
|
||||
**Slide 13: Viewing Argument as Implication**
|
||||
- If premises logically imply conclusion, argument is valid.
|
||||
- Example: ((p ⇒ q) ∧ p) ⇒ q
|
||||
|
||||
**Slide 15: Demonstrating Invalidity Using Truth Tables**
|
||||
- Argument is invalid if there's at least one assignment where premises are true, but conclusion is false.
|
||||
|
||||
**Slide 16: Demonstrating Invalidity Using Truth Table (Example)**
|
||||
- Argument: p ⇔ q; p ⇒ r; Therefore, p – Invalid argument.
|
||||
|
||||
| p | q | r | p ⇔ q | p ⇒ r |
|
||||
|---|---|------|-------|--------|
|
||||
| T | T | T | T | T |
|
||||
| F | T | F | F | F |
|
||||
|
||||
- Argument is invalid because there's a row where premises are true, but conclusion (p) is false.
|
||||
|
||||
**Slide 17: Exercise**
|
||||
- Demonstrate the invalidity of the argument: p ∨ q; ¬p; Therefore, ¬q.
|
||||
|
||||
**Slide 18: Solution to Exercise**
|
||||
- Atomic Propositions: p, q.
|
||||
|
||||
| p | q | p ∨ q | ¬p |
|
||||
|---|---|------|-----|
|
||||
| F | T | T | T |
|
||||
|
||||
- Argument is invalid because there's a row where premises are true, but conclusion (¬q) is false.
|
||||
|
||||
**Slide 19: A Problem with Truth Tables**
|
||||
- Using truth tables to establish validity becomes tedious as the number of variables increases.
|
||||
|
||||
**Slide 20: Deductive Proofs**
|
||||
- Approach to establishing validity using a series of simpler arguments known to be valid.
|
||||
- Uses laws of logic (logical equivalences) and inference rules.
|
||||
|
||||
**Slide 21: Inference Rules**
|
||||
- Primitive valid argument forms eliminating or introducing logical connectives.
|
||||
- Categories: Intro (introduces connective), Elim (eliminates connective).
|
||||
|
||||
**Slide 22: The Layout of an Inference Rule**
|
||||
- Premises (above the line): List of formulas already in proof.
|
||||
- Conclusion (below the line): What may be deduced by applying the inference rule.
|
||||
|
||||
**Slide 23: Conjunction (∧Intro)**
|
||||
- Introduces the connective ∧.
|
||||
- Example: p, q; Therefore, p ∧ q.
|
||||
|
||||
**Slide 24: Simplification (∧Elim)**
|
||||
- Eliminates the connective ∧.
|
||||
- Example: p ∧ q; Therefore, p.
|
||||
|
||||
**Slide 25: Addition (∨Intro)**
|
||||
- Introduces the connective ∨.
|
||||
- Example: p; Therefore, p ∨ q.
|
||||
|
||||
**Slide 26: Exercise on Disjunctive Syllogism**
|
||||
- Demonstrate the validity of the inference rule using a truth table.
|
||||
|
||||
**Slide 27: Solution to Exercise**
|
||||
- Atomic Propositions: p, q.
|
||||
|
||||
| p | q | ¬p |
|
||||
|---|---|-----|
|
||||
| F | T | T |
|
||||
|
||||
- Argument is valid because conclusion (q) is always true when premises are true.
|
||||
|
||||
**Slide 28: Modus Ponens (⇒Elim)**
|
||||
- Eliminates the connective ⇒.
|
||||
- Example: p ⇒ q; p; Therefore, q.
|
||||
|
||||
**Slide 29: Modus Tollens (⇒Elim)**
|
||||
- Eliminates the connective ⇒.
|
||||
- Example: p ⇒ q; ¬q; Therefore, ¬p.
|
||||
|
||||
**Slide 30: Other Inference Rules**
|
||||
- Double Negation (¬Elim): ¬¬p; Therefore, p.
|
||||
- Laws of Equivalence (⇔Elim): p ⇔ q; Therefore, p ⇒ q and q ⇒ p.
|
||||
|
||||
**Slide 31: Transitive Inference Rules**
|
||||
- Transitivity of Equivalence: If p ≡ q and q ≡ r, then p ≡ r.
|
||||
- Hypothetical Syllogism: If p ⇒ q and q ⇒ r, then p ⇒ r.
|
||||
|
||||
**Slide 32: Summary**
|
||||
- Valid arguments: Conclusion always true when premises are true.
|
||||
- Invalid arguments: At least one assignment where premises are true, but conclusion is false.
|
||||
- Truth tables demonstrate invalidity.
|
||||
- Inference rules deduce true propositions from other true propositions.
|
||||
|
||||
**Slide 33: Reading and References**
|
||||
- Russell, Norvig (2022). Artificial Intelligence. 4th Edition.
|
||||
- Nissanke (1999). Introductory Logic and Sets for Computer Scientists.
|
||||
- Gray (1984). Logic, Algebra and Databases.
|
||||
BIN
AI & Data Mining/Week 22/Week 22 Validity and Inference Rules.pdf
Executable file
BIN
AI & Data Mining/Week 22/Week 22 Validity and Inference Rules.pdf
Executable file
Binary file not shown.
BIN
AI & Data Mining/Week 22/test.pdf
Executable file
BIN
AI & Data Mining/Week 22/test.pdf
Executable file
Binary file not shown.
Reference in New Issue
Block a user