vault backup: 2025-03-16 18:59:42
This commit is contained in:
204
AI & Data Mining/Week 23/Week 23 - Deductive Proofs.md
Normal file
204
AI & Data Mining/Week 23/Week 23 - Deductive Proofs.md
Normal file
@@ -0,0 +1,204 @@
|
||||
|
||||
**Slide 3: Recap on Logical Implication (Entailment) |-|=-**
|
||||
|
||||
- Entailment notation: p |=q if and only if the implication p$\implies$q is a tautology.
|
||||
- Example:
|
||||
- p $\land$ q |=q
|
||||
- Truth table for p $\implies$ q:
|
||||
|
||||
| p | q | p $\land$ q | p $\implies$ q |
|
||||
|---|---|------|--------|
|
||||
| T | T | T | T |
|
||||
| T | F | F | F |
|
||||
| F | T | F | T |
|
||||
| F | F | F | T |
|
||||
|
||||
**Slide 4: (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) |-|=-**
|
||||
|
||||
- Intuitively, if r implies both s and $\lnot$s, then r must be false.
|
||||
- Truth table for (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s):
|
||||
|
||||
| r | s | $\lnot$s | (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) |
|
||||
|---|---|---|------------------------|
|
||||
| T | T | F | F |
|
||||
| T | F | F | F |
|
||||
| F | T | T | T |
|
||||
| F | F | T | T |
|
||||
|
||||
**Slide 5: p $\vdash$ q**
|
||||
|
||||
- Notation: p $\vdash$ q means q is provable from p using inference rules.
|
||||
- Example:
|
||||
- A $\implies$ B, $\lnot$A, therefore $\lnot$B
|
||||
|
||||
**Slide 6: Differences Between |-|=- and $\vdash$**
|
||||
|
||||
- |= indicates semantic entailment (truth conditions).
|
||||
- $\vdash$ represents syntactic derivation (inference rules).
|
||||
|
||||
**Slide 7: Recap on Inference Rules**
|
||||
|
||||
- Example inference rules:
|
||||
- Modus Ponens ($\implies$Elim):
|
||||
|
||||
p $\implies$ q, p $\vdash$ q
|
||||
|
||||
- Conjunction Introduction ($\land$Intro):
|
||||
|
||||
p $\vdash$ q, p $\vdash$ r $\vdash$ p $\land$ q
|
||||
|
||||
- Conditional Proof ($\implies$Intro):
|
||||
|
||||
p $\vdash$ r, p $\vdash$ s $\vdash$ p $\implies$ (r $\land$ s)
|
||||
|
||||
**Slide 8: Layout of an Inference Rule**
|
||||
|
||||
- Premises above the line, conclusion below the line.
|
||||
- Example inference rule ($\implies$Intro):
|
||||
|
||||
p $\vdash$ r, p $\vdash$ s
|
||||
p $\implies$ (r $\land$ s)
|
||||
|
||||
**Slide 9: Presentation of Proofs**
|
||||
|
||||
- Steps:
|
||||
- Number each step.
|
||||
- Justify each step with previous line(s) and inference rule used.
|
||||
|
||||
**Slide 10: Deriving $\lnot$p $\implies$ r From (p $\land$ q) $\lor$ r**
|
||||
|
||||
- Example proof:
|
||||
|
||||
(p $\land$ q) $\lor$ r, $\lnot$E
|
||||
…
|
||||
$\lnot$p $\implies$ r
|
||||
|
||||
**Slide 11: Two Special Inference Rules**
|
||||
|
||||
- Deductive Theorem ($\implies$Intro):
|
||||
|
||||
p $\vdash$ r, p $\vdash$ s
|
||||
p $\implies$ (r $\land$ s)
|
||||
|
||||
- Reductio ad absurdum ($\lnot$Intro):
|
||||
|
||||
p $\vdash$ r, p $\vdash$ $\lnot$s
|
||||
p $\vdash$ $\lnot$r
|
||||
|
||||
**Slide 12: Conditional Proofs**
|
||||
|
||||
- Strategy: Assume p, deduce q if possible, discharge assumption.
|
||||
- Example:
|
||||
|
||||
(p $\land$ q) $\lor$ r
|
||||
…
|
||||
$\lnot$p $\implies$ r
|
||||
|
||||
**Slide 13: Indirect Proofs**
|
||||
|
||||
- Strategy: Assume negation of goal, deduce contradiction.
|
||||
- Example:
|
||||
|
||||
(p $\land$ q) $\lor$ r
|
||||
…
|
||||
$\lnot$p $\implies$ r
|
||||
|
||||
**Slide 14: Solution to Exercise**
|
||||
|
||||
Given argument:
|
||||
A (You eat carefully) ⇒ B (You have a healthy digestive system)
|
||||
C (You exercise regularly) ⇒ D (You are very fit)
|
||||
B ∨ D ⇒ E (You live to a ripe old age)
|
||||
¬E
|
||||
Therefore, ¬A ∧ ¬C
|
||||
|
||||
**Proof:**
|
||||
|
||||
| Line | Formula | Justification |
|
||||
| ---- | --------- | -------------------- |
|
||||
| 1 | A ⇒ B | Premise |
|
||||
| 2 | C ⇒ D | Premise |
|
||||
| 3 | B ∨ D ⇒ E | Premise |
|
||||
| 4 | ¬E | Premise |
|
||||
| 5 | ¬(B ∨ D) | Modus Tollens (3, 4) |
|
||||
| 6 | ¬B ∧ ¬D | De Morgan's Law (5) |
|
||||
| 7 | ¬B | ∧Elim (6) |
|
||||
| 8 | ¬A | Modus Tollens (1, 7) |
|
||||
| 9 | ¬D | ∧Elim (6) |
|
||||
| 10 | ¬C | Modus Tollens (2, 9) |
|
||||
| 11 | ¬A ∧ ¬C | ∧Intro (8, 10) |
|
||||
|
||||
**Conclusion:**
|
||||
We have proven that ¬A ∧ ¬C, i.e., you did not eat carefully and you did not exercise regularly.
|
||||
|
||||
**Slide 15: Two Special Inference Rules (continued)**
|
||||
|
||||
- Deductive Theorem:
|
||||
|
||||
p $\vdash$ r, p $\vdash$ s
|
||||
p $\implies$ (r $\land$ s)
|
||||
|
||||
- Reductio ad absurdum:
|
||||
|
||||
p $\vdash$ r, p $\vdash$ $\lnot$s
|
||||
p $\vdash$ $\lnot$r
|
||||
|
||||
**Slide 16: Soundness and Completeness**
|
||||
|
||||
- Sound: Valid argument with true premises.
|
||||
- Complete: Derives any sentence entailed by premises.
|
||||
|
||||
**Slide 17: Formal Proofs of Natural Language Arguments**
|
||||
|
||||
- Steps:
|
||||
- Identify atomic propositions.
|
||||
- Formalize argument in logic.
|
||||
- Check for invalidity.
|
||||
- Attempt proof.
|
||||
|
||||
**Slide 18: Example - Travel**
|
||||
|
||||
- Argument:
|
||||
|
||||
…
|
||||
Therefore, if my neighbours claim to be impressed then they are just pretending.
|
||||
|
||||
**Slide 19: Example - Travel (continued)**
|
||||
|
||||
- Formalize argument:
|
||||
|
||||
p $\implies$ q, $\lnot$p $\implies$ $\lnot$r, $\lnot$q
|
||||
…
|
||||
$\lnot$r
|
||||
|
||||
- Proof:
|
||||
|
||||
…
|
||||
$\lnot$p $\implies$ r
|
||||
|
||||
**Slide 20: Example - Nutrition**
|
||||
|
||||
- Argument:
|
||||
|
||||
…
|
||||
Therefore, you did not eat carefully and you did not exercise regularly.
|
||||
|
||||
**Slide 21: Example - Nutrition (continued)**
|
||||
|
||||
- Formalize argument:
|
||||
A $\implies$ B, C $\implies$ D, B $\lor$ D $\implies$ E, $\lnot$E
|
||||
…
|
||||
$\lnot$A $\land$ $\lnot$C
|
||||
- Proof:
|
||||
…
|
||||
$\lnot$A $\land$ $\lnot$C
|
||||
|
||||
**Slide 22: Application to Software Engineering**
|
||||
|
||||
- Questions about software specifications and claims are arguments.
|
||||
|
||||
**Slide 23: Reading and References**
|
||||
|
||||
- Russell and Norvig, Artificial Intelligence (4th Edition)
|
||||
- Nissanke, Introductory Logic and Sets for Computer Scientists
|
||||
- Gray, Logic, Algebra and Databases
|
Reference in New Issue
Block a user