vault backup: 2025-03-16 18:59:42

This commit is contained in:
boris
2025-03-16 18:59:42 +00:00
parent 6befcc90d4
commit ae837183f1
188 changed files with 17794 additions and 409 deletions

View File

@@ -0,0 +1,204 @@
**Slide 3: Recap on Logical Implication (Entailment) |-|=-**
- Entailment notation: p |=q if and only if the implication p$\implies$q is a tautology.
- Example:
- p $\land$ q |=q
- Truth table for p $\implies$ q:
| p | q | p $\land$ q | p $\implies$ q |
|---|---|------|--------|
| T | T | T | T |
| T | F | F | F |
| F | T | F | T |
| F | F | F | T |
**Slide 4: (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) |-|=-**
- Intuitively, if r implies both s and $\lnot$s, then r must be false.
- Truth table for (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s):
| r | s | $\lnot$s | (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) |
|---|---|---|------------------------|
| T | T | F | F |
| T | F | F | F |
| F | T | T | T |
| F | F | T | T |
**Slide 5: p $\vdash$ q**
- Notation: p $\vdash$ q means q is provable from p using inference rules.
- Example:
- A $\implies$ B, $\lnot$A, therefore $\lnot$B
**Slide 6: Differences Between |-|=- and $\vdash$**
- |= indicates semantic entailment (truth conditions).
- $\vdash$ represents syntactic derivation (inference rules).
**Slide 7: Recap on Inference Rules**
- Example inference rules:
- Modus Ponens ($\implies$Elim):
p $\implies$ q, p $\vdash$ q
- Conjunction Introduction ($\land$Intro):
p $\vdash$ q, p $\vdash$ r $\vdash$ p $\land$ q
- Conditional Proof ($\implies$Intro):
p $\vdash$ r, p $\vdash$ s $\vdash$ p $\implies$ (r $\land$ s)
**Slide 8: Layout of an Inference Rule**
- Premises above the line, conclusion below the line.
- Example inference rule ($\implies$Intro):
p $\vdash$ r, p $\vdash$ s
p $\implies$ (r $\land$ s)
**Slide 9: Presentation of Proofs**
- Steps:
- Number each step.
- Justify each step with previous line(s) and inference rule used.
**Slide 10: Deriving $\lnot$p $\implies$ r From (p $\land$ q) $\lor$ r**
- Example proof:
(p $\land$ q) $\lor$ r, $\lnot$E
$\lnot$p $\implies$ r
**Slide 11: Two Special Inference Rules**
- Deductive Theorem ($\implies$Intro):
p $\vdash$ r, p $\vdash$ s
p $\implies$ (r $\land$ s)
- Reductio ad absurdum ($\lnot$Intro):
p $\vdash$ r, p $\vdash$ $\lnot$s
p $\vdash$ $\lnot$r
**Slide 12: Conditional Proofs**
- Strategy: Assume p, deduce q if possible, discharge assumption.
- Example:
(p $\land$ q) $\lor$ r
$\lnot$p $\implies$ r
**Slide 13: Indirect Proofs**
- Strategy: Assume negation of goal, deduce contradiction.
- Example:
(p $\land$ q) $\lor$ r
$\lnot$p $\implies$ r
**Slide 14: Solution to Exercise**
Given argument:
A (You eat carefully) ⇒ B (You have a healthy digestive system)
C (You exercise regularly) ⇒ D (You are very fit)
B D ⇒ E (You live to a ripe old age)
¬E
Therefore, ¬A ∧ ¬C
**Proof:**
| Line | Formula | Justification |
| ---- | --------- | -------------------- |
| 1 | A ⇒ B | Premise |
| 2 | C ⇒ D | Premise |
| 3 | B D ⇒ E | Premise |
| 4 | ¬E | Premise |
| 5 | ¬(B D) | Modus Tollens (3, 4) |
| 6 | ¬B ∧ ¬D | De Morgan's Law (5) |
| 7 | ¬B | ∧Elim (6) |
| 8 | ¬A | Modus Tollens (1, 7) |
| 9 | ¬D | ∧Elim (6) |
| 10 | ¬C | Modus Tollens (2, 9) |
| 11 | ¬A ∧ ¬C | ∧Intro (8, 10) |
**Conclusion:**
We have proven that ¬A ∧ ¬C, i.e., you did not eat carefully and you did not exercise regularly.
**Slide 15: Two Special Inference Rules (continued)**
- Deductive Theorem:
p $\vdash$ r, p $\vdash$ s
p $\implies$ (r $\land$ s)
- Reductio ad absurdum:
p $\vdash$ r, p $\vdash$ $\lnot$s
p $\vdash$ $\lnot$r
**Slide 16: Soundness and Completeness**
- Sound: Valid argument with true premises.
- Complete: Derives any sentence entailed by premises.
**Slide 17: Formal Proofs of Natural Language Arguments**
- Steps:
- Identify atomic propositions.
- Formalize argument in logic.
- Check for invalidity.
- Attempt proof.
**Slide 18: Example - Travel**
- Argument:
Therefore, if my neighbours claim to be impressed then they are just pretending.
**Slide 19: Example - Travel (continued)**
- Formalize argument:
p $\implies$ q, $\lnot$p $\implies$ $\lnot$r, $\lnot$q
$\lnot$r
- Proof:
$\lnot$p $\implies$ r
**Slide 20: Example - Nutrition**
- Argument:
Therefore, you did not eat carefully and you did not exercise regularly.
**Slide 21: Example - Nutrition (continued)**
- Formalize argument:
A $\implies$ B, C $\implies$ D, B $\lor$ D $\implies$ E, $\lnot$E
$\lnot$A $\land$ $\lnot$C
- Proof:
$\lnot$A $\land$ $\lnot$C
**Slide 22: Application to Software Engineering**
- Questions about software specifications and claims are arguments.
**Slide 23: Reading and References**
- Russell and Norvig, Artificial Intelligence (4th Edition)
- Nissanke, Introductory Logic and Sets for Computer Scientists
- Gray, Logic, Algebra and Databases