vault backup: 2025-03-16 18:59:42
This commit is contained in:
@@ -0,0 +1,18 @@
|
||||
1. Just the following propositions hold true:
|
||||
1. male(Ahmed) male(Patel) male(Scott) tall(Ahmed) tall(Patel) short(Khan) short(Scott)
|
||||
Evaluate the truth of the following formula
|
||||
|
||||
| x | tall(x) | male(x) | short(x) | $\lnot$short(x) | male(x) $\land \lnot$short(x) | tall(x) $\iff$ male(x) $\land \lnot$short(x) | $\forall x \bullet$tall(x) $\iff$ male(x) $\land \lnot$short(x) |
|
||||
| --- | ------- | ------- | -------- | --------------- | ----------------------------- | -------------------------------------------- | --------------------------------------------------------------- |
|
||||
| Ah | T | T | F | T | T | T | |
|
||||
| Kh | F | F | T | F | F | T | |
|
||||
| Pa | T | T | F | T | T | T | |
|
||||
| Sc | F | T | T | F | F | T | |
|
||||
| | | | | | | | T |
|
||||
2. Using appropriate binary predicates, express each of the following sentences in predicate logic
|
||||
a) Salford stores only supply stores outside of Salford.
|
||||
- $\forall x \bullet \forall y \bullet \textsf{in(x, Salford)} \land \textsf{supples}$
|
||||
b) No store supplies itself
|
||||
c) There are no stores in Eccles but there are some in Trafford.
|
||||
d) Stores do not supply stores that are supplied by stores which they supply
|
||||
e) Stores which supply each other are always in the same place
|
||||
@@ -0,0 +1,171 @@
|
||||
**Slide 1: Learning Objectives**
|
||||
|
||||
- Understand when the order of quantifiers is important.
|
||||
- Understand how ∀ and ∃ are connected.
|
||||
- Use and remember scoping rules.
|
||||
- Identify bound and free variables in formulae.
|
||||
- Establish the truth of formulae in predicate logic.
|
||||
- Understand why predicate logic is described as undecidable.
|
||||
- Understand the difference between zero-order, first-order, and higher-order predicate logics.
|
||||
|
||||
**Slide 2: Objectives & Recap**
|
||||
|
||||
- Quantifiers and their alternative view.
|
||||
- Distributive laws of quantifiers.
|
||||
- De Morgan's laws with quantifiers.
|
||||
- Scope of quantifiers.
|
||||
- Bound and free variables.
|
||||
|
||||
**Slide 3: The Universal Quantifier (∀)**
|
||||
|
||||
- Pronounced as "for all".
|
||||
- Example: ∀x (human(x) ⇒ mortal(x)) = All humans are mortal.
|
||||
- In terms of conjunction: ∀x p(x) ≡ p(x₁) ∧ p(x₂) ∧... ∧ p(xₙ)
|
||||
|
||||
**Slide 4: The Existential Quantifier (∃)**
|
||||
|
||||
- Pronounced as "there exists" or "for some".
|
||||
- Example: ∃x (human(x) ∧ happy(x)) = Some humans are happy.
|
||||
- In terms of disjunction: ∃x p(x) ≡ p(x₁) ∨ p(x₂) ∨... ∨ p(xₙ)
|
||||
|
||||
**Slide 5: Distributive Laws of Quantifiers**
|
||||
|
||||
- ∀x (p(x) ∧ q(x)) ≡ (∀x p(x)) ∧ (∀x q(x))
|
||||
- ∃x (p(x) ∨ q(x)) ≡ (∃x p(x)) ∨ (∃x q(x))
|
||||
|
||||
**Slide 6: The Order of Quantification**
|
||||
|
||||
- Example 1 (Everyone loves someone): ∀x ∃y loves(x, y)
|
||||
- Example 2 (There is someone loved by everyone): ∃y ∀x loves(x, y)
|
||||
|
||||
**Slide 7: De Morgan's Laws and Quantifiers**
|
||||
|
||||
- ¬∃x p(x) ≡ ∀x ¬p(x)
|
||||
- ¬∀x p(x) ≡ ∃x ¬p(x)
|
||||
|
||||
**Slide 8: Scope of Quantifiers**
|
||||
|
||||
- In absence of brackets, scope extends to the end of the formula.
|
||||
- Brackets can enforce different scoping patterns.
|
||||
|
||||
**Slide 9: Bound and Free Variables**
|
||||
|
||||
- Bound variable: occurrence introduced by a quantifier within its scope.
|
||||
- Example:
|
||||
```
|
||||
Formula Variable status
|
||||
child(x) Only one occurrence of x, free.
|
||||
∀x child(x) ∧ clever(x) Both occurrences of x are bound by the same quantifier.
|
||||
((∀x child(x)) ∧ clever(x)) The first occurrence of x is bound, the second is free.
|
||||
```
|
||||
- Free variable: occurrence not within any quantifier's scope.
|
||||
|
||||
**Slide 10: Meaning of Bound Variables**
|
||||
|
||||
- The meaning of a bound variable does not depend on its name.
|
||||
- Example:
|
||||
```
|
||||
∀x (child(x) ∧ clever(x)) ⇒ ∃y loves(y, x)
|
||||
∀B (child(B) ∧ clever(B)) ⇒ ∃C loves(C, B)
|
||||
```
|
||||
|
||||
**Slide 11: Meaning of Free Variables**
|
||||
|
||||
- Free variables denote unknowns or unspecified objects.
|
||||
- Example:
|
||||
```
|
||||
∀x (child(x) ∧ clever(x)) ⇒ x is loved.
|
||||
∀x (child(x) ∧ clever(x)) ⇒ z is loved.
|
||||
```
|
||||
|
||||
**Slide 12: Exercise**
|
||||
|
||||
- Identify bound and free variables in the formula:
|
||||
```
|
||||
∃x taller(y, x) ∃x ∃y taller(x, y) ∧ taller(x, z)
|
||||
```
|
||||
- Solution:
|
||||
- In the first formula: x is bound, y is free.
|
||||
- In the second formula: y is bound by ∃y, z is free. Both occurrences of x are bound and refer to the same variable.
|
||||
|
||||
**Slide 13: The Equality Symbol (=)**
|
||||
|
||||
- ⊢ Richard has at least two brothers:
|
||||
```
|
||||
∃x ∃y (brother(x, richard) ∧ brother(y, richard) ∧ ¬(x = y))
|
||||
```
|
||||
- Definition of sibling using parent:
|
||||
```
|
||||
∀x ∀y sibling(x, y) ≡ (¬(x = y) ∧ ∃m ∃f ¬(m = f) ∧ parent(m, x) ∧ parent(f, x) ∧ parent(m, y) ∧ parent(f, y))
|
||||
```
|
||||
|
||||
**Slide 14: Establishing the Truth Values of Formulae**
|
||||
|
||||
- Example (slide 21 and 22):
|
||||
- Individuals: Ahmed, Khan, Patel, Scott.
|
||||
- Properties: male, tall, short.
|
||||
- Formula: ∀x (male(x) ⇒ tall(x) ∨ short(x))
|
||||
- Truth table shows the formula is false (Patel is male but not tall or short).
|
||||
|
||||
**Slide 15: Exercise**
|
||||
|
||||
- Given individuals, properties, and true propositions as in slide 23.
|
||||
- Evaluate the truth of: ∀x ¬male(x) ⇒ short(x)
|
||||
- Solution (slide 24):
|
||||
```
|
||||
x male(x) ¬male(x) short(x) ¬male(x) ⇒ short(x)
|
||||
Ahmed T F F F T
|
||||
Khan F T T T T
|
||||
Patel T F F F T
|
||||
Scott T F T F F
|
||||
```
|
||||
- The formula is false (Patel is male but not short).
|
||||
|
||||
**Slide 16: Example Involving ∃**
|
||||
|
||||
- Given individuals, properties, and true propositions as in slide 25.
|
||||
- Formula: ∃x (male(x) ∧ ¬tall(x) ⇒ short(x))
|
||||
- Truth table (slide 26):
|
||||
```
|
||||
x male(x) ¬tall(x) short(x) ¬tall(x) ⇒ short(x) male(x) ∧ ¬tall(x) ⇒ short(x)
|
||||
Ahmed T F F F T T
|
||||
Khan F F T F F F
|
||||
Patel T F F F F F
|
||||
Scott T T T F T F
|
||||
```
|
||||
- The formula is true (Scott is male, not tall but short).
|
||||
|
||||
**Slide 17: Exercise**
|
||||
|
||||
- Given individuals, properties, and true propositions as in slide 27.
|
||||
- Evaluate the truth of: ∃x (male(x) ∧ (tall(x) ∨ ¬short(x)))
|
||||
- Solution (slide 28):
|
||||
```
|
||||
x male(x) tall(x) short(x) ¬short(x) tall(x) ∨ ¬short(x) male(x) ∧ (tall(x) ∨ ¬short(x))
|
||||
Ahmed T T F T T T T
|
||||
Khan F F T F F F F
|
||||
Patel T T F F T T F
|
||||
Scott T F T F F F F
|
||||
```
|
||||
- The formula is true (Ahmed and Patel are males, tall or not short).
|
||||
|
||||
**Slide 29: Predicate Logic is Undecidable**
|
||||
|
||||
- Universal quantification introduces computational impossibility when testing truth values with an infinite number of possible values.
|
||||
|
||||
**Slide 30: First-order Predicate Logic**
|
||||
|
||||
- Quantifiers refer only to objects (constants), not predicate or function names.
|
||||
- Propositional logic is zero-order logic.
|
||||
|
||||
**Slide 31: Summary**
|
||||
|
||||
- Order of quantifiers matters when both ∀ and ∃ are present.
|
||||
- Quantifiers are connected through negation, obey De Morgan's laws.
|
||||
- Scope of quantifiers extends to the end of the formula without brackets.
|
||||
- Bound variables are introduced by a quantifier within its scope; free variables are not within any quantifier's scope.
|
||||
|
||||
**Slide 32: Reading, References and Acknowledgements**
|
||||
|
||||
- Reading from Artificial Intelligence textbook by Russell and Norvig.
|
||||
- References: Introductory Logic and Sets for Computer Scientists by Nissanke.
|
||||
Reference in New Issue
Block a user