vault backup: 2025-03-16 18:59:42

This commit is contained in:
boris
2025-03-16 18:59:42 +00:00
parent 6befcc90d4
commit ae837183f1
188 changed files with 17794 additions and 409 deletions

View File

@@ -1,6 +1,7 @@
# Logarithms
$log_2X$ used for generating decision trees
- Power to which we have to raise 2 to get X
- When using, X will be probability between 0 and 1
- log of probability is always negative
@@ -48,19 +49,23 @@ $log_2X$ used for generating decision trees
- Given probability distribution, info required to predict an event is the distributions entropy
- Entropy gives the information required in bits
# $I(p_1,p_2,...,p_n)=-p_{1}\log_{2}p_1 -p_{2}\log_{2}p_2 ... -p_{n}\log_{2}p_n$
Where n = number of classes, and $p_1 + p_2 + ... p_{n} = 1$
# $I(p_1,p_2,,p_n)=-p_{1}\log_{2}p_1 -p_{2}\log_{2}p_2 -p_{n}\log_{2}p_n$
Where n = number of classes, and $p_1 + p_2 + … p_{n} = 1$
Minus signs included since output must be positive
### Expected Information for Outlook
- Outlook = Sunny
# $info([2,3]) = I(\frac{2}{5},\frac{3}{5}) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.971 bits$
- Outlook = Overcast
# $info([4,0]) = I(\frac{4}{4},\frac{0}{4}) = -1\log_2(1) -0\log_2(0) = 0 bits$
- Outlook = Rainy
# $info([3,2]) = I(\frac{3}{5},\frac{2}{5}) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.693 bits$
### Computing Information Gain

View File

@@ -1,2 +1 @@
![](Pasted%20image%2020241025132339.png)