![](Pasted%20image%2020250221132524.png) | Line | | | | | ---- | --------------------------- | ---------- | --------------------------------- | | 1 | $A \implies \lnot B$ | Premise | | | 2 | $(B \lor C) \lor D$ | Premise | | | 3 | $\lnot C \lor D \implies A$ | Premise | | | 4 | $\lnot C$ | Premise | | | 5 | $\lnot C \lor D$ | From 4 | $\lor Intro$ | | 6 | $A$ | From 3 & 5 | $\implies Elim$ Modus Ponens | | 7 | $\lnot B$ | From 1 & 6 | $\implies Elim$ Modus Ponens | | 8 | $\lnot B \land \lnot C$ | From 2 & 7 | $\land Intro$ | | 9 | $\lnot (B \lor C)$ | From 8 | De Morgans Law | | 10 | $D$ | From 9 | $\lor Elim$ Disjunctive Syllogism | B or C is not true, therefore D must be true from step 2.