Slide 3: Recap on Logical Implication (Entailment) |-|=-

- Entailment notation: $p \mid = q$ if and only if the implication $p \implies q$ is a tautology.
- Example:
 - $p \wedge q \mid = q$
 - Truth table for $p \implies q$:

p	q	$p \wedge q$	$p \implies q$
$\overline{\mathrm{T}}$	Т	Τ	Τ
\mathbf{T}	\mathbf{F}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
F	F	F	T

Slide 4:
$$(r \implies s) \land (r \implies \neg s) \mid - \mid = -$$

- Intuitively, if r implies both s and \neg s, then r must be false.
- Truth table for $(r \implies s) \land (r \implies \neg s)$:

Slide 5: $p \vdash q$

- Notation: $p \vdash q$ means q is provable from p using inference rules.
- Example:

$$-A \implies B, \neg A, \text{ therefore } \neg B$$

Slide 6: Differences Between |-|=- and \vdash

- |= indicates semantic entailment (truth conditions).
- \vdash represents syntactic derivation (inference rules).

Slide 7: Recap on Inference Rules

- Example inference rules:
 - Modus Ponens (\Longrightarrow Elim):

$$p \implies q, p \vdash q$$

- Conjunction Introduction (\wedge Intro):

$$p \vdash q, p \vdash r \vdash p \land q$$

- Conditional Proof (\Longrightarrow Intro):

$$p \vdash r, p \vdash s \vdash p \implies (r \land s)$$

Slide 8: Layout of an Inference Rule

- Premises above the line, conclusion below the line.
- Example inference rule (\Longrightarrow Intro):

$$p \vdash r, p \vdash s p \implies (r \land s)$$

Slide 9: Presentation of Proofs

- Steps:
 - Number each step.
 - Justify each step with previous line(s) and inference rule used.

Slide 10: Deriving $\neg p \implies r \text{ From } (p \land q) \lor r$

• Example proof:

$$(p \land q) \lor r, \neg E \dots \neg p \implies r$$

Slide 11: Two Special Inference Rules

• Deductive Theorem (\Longrightarrow Intro):

$$p \vdash r, p \vdash s p \implies (r \land s)$$

• Reductio ad absurdum (¬Intro):

$$p \vdash r, \ p \vdash \neg s \ p \vdash \neg r$$

Slide 12: Conditional Proofs

- Strategy: Assume p, deduce q if possible, discharge assumption.
- Example:

$$(p \land q) \lor r ... \neg p \implies r$$

Slide 13: Indirect Proofs

- Strategy: Assume negation of goal, deduce contradiction.
- Example:

$$(p \land q) \lor r ... \neg p \implies r$$

Slide 14: Solution to Exercise

Given argument: A (You eat carefully) B (You have a healthy digestive system) C (You exercise regularly) D (You are very fit) B D E (You live to a ripe old age) \neg E Therefore, \neg A \neg C

Proof:

Line	Formula	Justification
1	A B	Premise
2	C D	Premise
3	B D E	Premise
4	$\neg E$	Premise

Line	Formula	Justification
5	¬(B D)	Modus Tollens (3, 4)
6	$\neg B \neg D$	De Morgan's Law (5)
7	$\neg B$	Elim (6)
8	$\neg A$	Modus Tollens (1, 7)
9	$\neg D$	Elim (6)
10	$\neg C$	Modus Tollens (2, 9)
11	$\neg A \neg C$	Intro (8, 10)

Conclusion: We have proven that $\neg A$ $\neg C$, i.e., you did not eat carefully and you did not exercise regularly.

Slide 15: Two Special Inference Rules (continued)

• Deductive Theorem:

$$p \vdash r, p \vdash s p \implies (r \land s)$$

• Reductio ad absurdum:

$$p \vdash r, p \vdash \neg s p \vdash \neg r$$

Slide 16: Soundness and Completeness

- Sound: Valid argument with true premises.
- Complete: Derives any sentence entailed by premises.

Slide 17: Formal Proofs of Natural Language Arguments

- Steps:
 - Identify atomic propositions.
 - Formalize argument in logic.
 - Check for invalidity.
 - Attempt proof.

Slide 18: Example - Travel

- Argument:
 - ... Therefore, if my neighbours claim to be impressed then they are just pretending.

Slide 19: Example - Travel (continued)

• Formalize argument:

$$p \implies q, \neg p \implies \neg r, \neg q \dots \neg r$$

• Proof:

...
$$\neg p \implies r$$

Slide 20: Example - Nutrition

- Argument:
 - ... Therefore, you did not eat carefully and you did not exercise regularly.

Slide 21: Example - Nutrition (continued)

- Formalize argument: A \implies B, C \implies D, B \vee D \implies E, \neg E ... \neg A \wedge \neg C
- Proof: ... $\neg A \land \neg C$

Slide 22: Application to Software Engineering

• Questions about software specifications and claims are arguments.

Slide 23: Reading and References

- Russell and Norvig, Artificial Intelligence (4th Edition)
- Nissanke, Introductory Logic and Sets for Computer Scientists
- Gray, Logic, Algebra and Databases