1. Just the following propositions hold true: 1. male(Ahmed) male(Patel) male(Scott) tall(Ahmed) tall(Patel) short(Khan) short(Scott) Evaluate the truth of the following formula | x | tall(x) | male(x) | short(x) | $\lnot$short(x) | male(x) $\land \lnot$short(x) | tall(x) $\iff$ male(x) $\land \lnot$short(x) | $\forall x \bullet$tall(x) $\iff$ male(x) $\land \lnot$short(x) | | --- | ------- | ------- | -------- | --------------- | ----------------------------- | -------------------------------------------- | --------------------------------------------------------------- | | Ah | T | T | F | T | T | T | | | Kh | F | F | T | F | F | T | | | Pa | T | T | F | T | T | T | | | Sc | F | T | T | F | F | T | | | | | | | | | | T | 2. Using appropriate binary predicates, express each of the following sentences in predicate logic a) Salford stores only supply stores outside of Salford. - $\forall x \bullet \forall y \bullet \textsf{in(x, Salford)} \land \textsf{supples}$ b) No store supplies itself c) There are no stores in Eccles but there are some in Trafford. d) Stores do not supply stores that are supplied by stores which they supply e) Stores which supply each other are always in the same place