### **Slide Notes:** --- #### **Slide 0: Learning Objectives** - Identify genuine variables and variables standing for unknowns. - Describe the role of inference rules for eliminating and introducing quantifiers. - Justify constraints on handling variables when eliminating and introducing quantifiers. - Conduct proofs in predicate logic. - Prove the validity of an argument presented in English. --- #### **Slide 1: Contents** - Recap on inference rules - Deductive proof in predicate logic - Genuine variables versus unknown variables - Extra inference rules for predicate logic - Constraints on variables - Summary, reading and references --- #### **Slide 2: Recap on Inference Rules** | **Connective** | **Introduction Rule** | **Elimination Rule** | | ------------------ | --------------------------------------------------------------------- | ------------------------------------------------------------ | | ∧ (and) | ∧ Intro:$p, q \vdash p \land q$ | ∧ Elim:$p \land q, p \vdash q$ | | ∨ (or) | ∨ Intro:$p \vdash p \lor q$,$q \vdash p \lor q$ | ∨ Elim:$p \vdash \varnothing$,$p \lor q \vdash \varnothing$x | | ¬ (not) | N/A | ¬ Elim:$\neg p, q \vdash p$ | | ⇒ (implies) | ⇒ Intro:$p, p \Rightarrow q \vdash q$ | ⇒ Elim (Modus Ponens):$p \Rightarrow q, p \vdash q$ | | ⇔ (if and only if) | ⇔ Intro:$p \Rightarrow q, q \Rightarrow p \vdash p \leftrightarrow q$ | ⇔ Elim:$p \leftrightarrow q, p, q \vdash \varnothing$ | --- #### **Slide 3: Deductive Proof in Predicate Logic** 1. Reduce formulae to propositional form by removing quantifiers. 2. Manipulate formulae using inference rules and logical laws of propositional logic. 3. Reintroduce quantifiers at the end, depending on the goal. --- #### **Slide 4: Genuine Variables vs. Unknown Variables** - **Genuine variable**: - A free variable whose universal quantification yields a true formula. - **Unknown variable**: - A free variable whose existential quantification yields a true formula. --- #### **Slide 5: Exercise** **Example**: -$\frac{9}{z} = 3$ -$\text{even}(n) \lor \text{odd}(n)$ | **Variable** | **Status** | **Justification** | |--------------|-------------------------|-----------------------------------| |$z$ | Unknown variable |$\exists z \cdot \frac{9}{z} = 3$| |$n$ | Genuine variable |$\forall n \cdot (\text{even}(n) \lor \text{odd}(n))$| --- #### **Slide 6: Extra Inference Rules for Predicate Logic** | **Quantifier** | **Introduction Rule** | **Elimination Rule** | |-----------------|----------------------------------------|---------------------------------------------------| |$\forall$(for all) |$\forall \text{Intro}: \varphi(x), x \neq y \vdash \varphi(x)$|$\forall \text{Elim}: \forall x \cdot \varphi(x), \varphi(x) \vdash \varnothing$| |$\exists$(there exists) |$\exists \text{Intro}: \varphi(x), x \neq y \vdash \exists x \cdot \varphi(x)$|$\exists \text{Elim}: \exists x \cdot \varphi(x), \varphi(x) \vdash \varnothing$| --- #### **Slide 7: Freeing Variables from$\forall$** - Example: -$\forall x \cdot \text{lecturer}(x), \text{lecturer}(bryant)$ -$\forall x \cdot \text{lecturer}(x), \text{lecturer}(y)$ -$y$is a genuine variable. --- #### **Slide 8: Freeing Variables from$\exists$** - Example: -$\exists x \cdot \text{student}(x), \text{student}(y)$ -$y$is an unknown variable. --- #### **Slide 9: Introduction of$\forall$** - Constraint: - Do not introduce$\forall$on the basis of an individual (a constant). --- #### **Slide 10: Constraint 1** - When eliminating$\exists$, do not instantiate its variable with a constant. --- #### **Slide 11: Constraint 2** - When eliminating$\exists$, do not instantiate its variable with an existing free variable. --- #### **Slide 12: Constraint 3** - Do not introduce$\forall$on the basis of an individual (a constant). --- #### **Slide 13: Constraint 4** - Do not introduce$\forall$on the basis of an unknown. --- #### **Slide 14: Constraint 5** - Do not quantify a variable by introducing$\forall$in a formula if the formula contains another var obtained by eliminating$\exists$. --- #### **Slide 15: Constraint 6** - Within the scope of an assumption, do not introduce$\forall$on the basis of a variable appearing in the assumption. --- #### **Slide 16: Constraint 7** - Every instantiation, whether following the elimination of a$\forall$or$\exists$, must always be done with a free var, rather than a bound var. --- #### **Slide 17: Constraint 8** - Beware of binding any newly quantified var by an unintended quantifier. --- #### **Slide 18: Summary** - Use inference rules to eliminate and introduce logical connectives. - Handle quantifiers carefully, following constraints when eliminating and introducing them. --- #### **Slide 19: Summary of Constraints** 1. Do not assume a property holds for a particular individual based on it holding for at least one individual. 2. When eliminating$\exists$, do not instantiate its var with a constant or existing free var. 3. Do not introduce$\forall$on the basis of a constant or unknown. 4. Do not quantify a variable by introducing$\forall$if the formula contains another var from$\exists$elimination. 5. Within an assumption, do not introduce$\forall$based on a var in the assumption. 6. Instantiate variables only with free vars, not bound vars. 7. Avoid binding newly quantified vars by unintended quantifiers. --- #### **Slide 20: Deducing a Conclusion** Example: 1.$\forall x \cdot (\text{master}(x) \lor \text{slave}(x)) \Rightarrow \text{adult}(x) \land \text{man}(x)$ 2.$\neg \forall x \cdot (\text{adult}(x) \land \text{man}(x))$ 3.$\exists x \cdot (\neg (\text{adult}(x) \land \text{man}(x)))$ 4.$\neg (\text{master}(x) \lor \text{slave}(x))$ 5.$\neg \text{master}(x) \land \neg \text{slave}(x)$ 6.$\neg \text{master}(x)$ 7.$\exists y \cdot (\neg \text{master}(y))$ ---