**Slide 3: Recap on Logical Implication (Entailment) |-|=-** - Entailment notation: p |=q if and only if the implication p$\implies$q is a tautology. - Example: - p $\land$ q |=q - Truth table for p $\implies$ q: | p | q | p $\land$ q | p $\implies$ q | |---|---|------|--------| | T | T | T | T | | T | F | F | F | | F | T | F | T | | F | F | F | T | **Slide 4: (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) |-|=-** - Intuitively, if r implies both s and $\lnot$s, then r must be false. - Truth table for (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s): | r | s | $\lnot$s | (r $\implies$ s) $\land$ (r $\implies$ $\lnot$s) | |---|---|---|------------------------| | T | T | F | F | | T | F | F | F | | F | T | T | T | | F | F | T | T | **Slide 5: p $\vdash$ q** - Notation: p $\vdash$ q means q is provable from p using inference rules. - Example: - A $\implies$ B, $\lnot$A, therefore $\lnot$B **Slide 6: Differences Between |-|=- and $\vdash$** - |= indicates semantic entailment (truth conditions). - $\vdash$ represents syntactic derivation (inference rules). **Slide 7: Recap on Inference Rules** - Example inference rules: - Modus Ponens ($\implies$Elim): p $\implies$ q, p $\vdash$ q - Conjunction Introduction ($\land$Intro): p $\vdash$ q, p $\vdash$ r $\vdash$ p $\land$ q - Conditional Proof ($\implies$Intro): p $\vdash$ r, p $\vdash$ s $\vdash$ p $\implies$ (r $\land$ s) **Slide 8: Layout of an Inference Rule** - Premises above the line, conclusion below the line. - Example inference rule ($\implies$Intro): p $\vdash$ r, p $\vdash$ s p $\implies$ (r $\land$ s) **Slide 9: Presentation of Proofs** - Steps: - Number each step. - Justify each step with previous line(s) and inference rule used. **Slide 10: Deriving $\lnot$p $\implies$ r From (p $\land$ q) $\lor$ r** - Example proof: (p $\land$ q) $\lor$ r, $\lnot$E … $\lnot$p $\implies$ r **Slide 11: Two Special Inference Rules** - Deductive Theorem ($\implies$Intro): p $\vdash$ r, p $\vdash$ s p $\implies$ (r $\land$ s) - Reductio ad absurdum ($\lnot$Intro): p $\vdash$ r, p $\vdash$ $\lnot$s p $\vdash$ $\lnot$r **Slide 12: Conditional Proofs** - Strategy: Assume p, deduce q if possible, discharge assumption. - Example: (p $\land$ q) $\lor$ r … $\lnot$p $\implies$ r **Slide 13: Indirect Proofs** - Strategy: Assume negation of goal, deduce contradiction. - Example: (p $\land$ q) $\lor$ r … $\lnot$p $\implies$ r **Slide 14: Solution to Exercise** Given argument: A (You eat carefully) ⇒ B (You have a healthy digestive system) C (You exercise regularly) ⇒ D (You are very fit) B ∨ D ⇒ E (You live to a ripe old age) ¬E Therefore, ¬A ∧ ¬C **Proof:** | Line | Formula | Justification | | ---- | --------- | -------------------- | | 1 | A ⇒ B | Premise | | 2 | C ⇒ D | Premise | | 3 | B ∨ D ⇒ E | Premise | | 4 | ¬E | Premise | | 5 | ¬(B ∨ D) | Modus Tollens (3, 4) | | 6 | ¬B ∧ ¬D | De Morgan's Law (5) | | 7 | ¬B | ∧Elim (6) | | 8 | ¬A | Modus Tollens (1, 7) | | 9 | ¬D | ∧Elim (6) | | 10 | ¬C | Modus Tollens (2, 9) | | 11 | ¬A ∧ ¬C | ∧Intro (8, 10) | **Conclusion:** We have proven that ¬A ∧ ¬C, i.e., you did not eat carefully and you did not exercise regularly. **Slide 15: Two Special Inference Rules (continued)** - Deductive Theorem: p $\vdash$ r, p $\vdash$ s p $\implies$ (r $\land$ s) - Reductio ad absurdum: p $\vdash$ r, p $\vdash$ $\lnot$s p $\vdash$ $\lnot$r **Slide 16: Soundness and Completeness** - Sound: Valid argument with true premises. - Complete: Derives any sentence entailed by premises. **Slide 17: Formal Proofs of Natural Language Arguments** - Steps: - Identify atomic propositions. - Formalize argument in logic. - Check for invalidity. - Attempt proof. **Slide 18: Example - Travel** - Argument: … Therefore, if my neighbours claim to be impressed then they are just pretending. **Slide 19: Example - Travel (continued)** - Formalize argument: p $\implies$ q, $\lnot$p $\implies$ $\lnot$r, $\lnot$q … $\lnot$r - Proof: … $\lnot$p $\implies$ r **Slide 20: Example - Nutrition** - Argument: … Therefore, you did not eat carefully and you did not exercise regularly. **Slide 21: Example - Nutrition (continued)** - Formalize argument: A $\implies$ B, C $\implies$ D, B $\lor$ D $\implies$ E, $\lnot$E … $\lnot$A $\land$ $\lnot$C - Proof: … $\lnot$A $\land$ $\lnot$C **Slide 22: Application to Software Engineering** - Questions about software specifications and claims are arguments. **Slide 23: Reading and References** - Russell and Norvig, Artificial Intelligence (4th Edition) - Nissanke, Introductory Logic and Sets for Computer Scientists - Gray, Logic, Algebra and Databases