1.1 KiB
1.1 KiB
- George Boole
- Truth Tables for a) Negation b) Contraposition
a) Negation Law ¬¬p ≡ p
p | ¬p | ¬(¬p) | ¬(¬p) ⇔ p |
---|---|---|---|
T | F | T | T |
F | T | F | T |
b)
Contraposition Law p ⇒ q ≡ ¬q ⇒ ¬p
p | ¬p | q | ¬q | p ⇒ q | ¬q ⇒ ¬p | p ⇒ q ⇔ ¬q ⇒ ¬p |
---|---|---|---|---|---|---|
T | F | T | F | T | T | T |
T | F | F | T | F | F | T |
F | T | T | F | T | T | T |
F | T | F | T | T | T | T |
p ⇒ q ⇔ ¬q ⇒ ¬p MUST be true, since p ⇒ q and ¬q ⇒ ¬p are shown in the truth table to be the same logical equivalence
- Provide names of laws
- Negation Law
- De Morgan's Law
- Negation Law
- De Morgan's Law
- Negation Law Twice
- Associative Law
- De Morgan's Law
- De Morgan's Law
- Negation Law Twice
- Show logical equivalence p ⇒ q ¬q ⇒ ¬p p ⇒ q ≡ (¬p) v q ≡ q v (¬p) ≡ ¬ (¬q) v (¬p) ≡ (¬q) ⇒ (¬p)