2.0 KiB
2.0 KiB
- Just the following propositions hold true:
- male(Ahmed) male(Patel) male(Scott) tall(Ahmed) tall(Patel) short(Khan) short(Scott) Evaluate the truth of the following formula
x | tall(x) | male(x) | short(x) | $\lnot$short(x) | male(x) $\land \lnot$short(x) | tall(x) \iff male(x) $\land \lnot$short(x) |
$\forall x \bullet$tall(x) \iff male(x) $\land \lnot$short(x) |
---|---|---|---|---|---|---|---|
Ah | T | T | F | T | T | T | |
Kh | F | F | T | F | F | T | |
Pa | T | T | F | T | T | T | |
Sc | F | T | T | F | F | T | |
T | |||||||
2. Using appropriate binary predicates, express each of the following sentences in predicate logic | |||||||
a) Salford stores only supply stores outside of Salford. | |||||||
- \forall x \bullet \forall y \bullet \textsf{in(x, Salford)} \land \textsf{supples} |
|||||||
b) No store supplies itself | |||||||
c) There are no stores in Eccles but there are some in Trafford. | |||||||
d) Stores do not supply stores that are supplied by stores which they supply | |||||||
e) Stores which supply each other are always in the same place |