vault backup: 2025-01-31 09:13:25
This commit is contained in:
3
.obsidian/core-plugins.json
vendored
3
.obsidian/core-plugins.json
vendored
@@ -26,5 +26,6 @@
|
||||
"workspaces": false,
|
||||
"file-recovery": true,
|
||||
"publish": false,
|
||||
"sync": false
|
||||
"sync": false,
|
||||
"webviewer": false
|
||||
}
|
24
.obsidian/workspace.json
vendored
24
.obsidian/workspace.json
vendored
@@ -20,8 +20,21 @@
|
||||
"icon": "lucide-file",
|
||||
"title": "Week 20 - Intro to Propositional Logic"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "cc4f0e641615871b",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "release-notes",
|
||||
"state": {
|
||||
"currentVersion": "1.8.3"
|
||||
},
|
||||
"icon": "lucide-book-up",
|
||||
"title": "Release Notes 1.8.3"
|
||||
}
|
||||
}
|
||||
]
|
||||
],
|
||||
"currentTab": 1
|
||||
}
|
||||
],
|
||||
"direction": "vertical"
|
||||
@@ -67,7 +80,8 @@
|
||||
"state": {
|
||||
"type": "file-explorer",
|
||||
"state": {
|
||||
"sortOrder": "alphabetical"
|
||||
"sortOrder": "alphabetical",
|
||||
"autoReveal": false
|
||||
},
|
||||
"icon": "lucide-folder-closed",
|
||||
"title": "Files"
|
||||
@@ -198,10 +212,11 @@
|
||||
"mermaid-tools:Open Mermaid Toolbar": false
|
||||
}
|
||||
},
|
||||
"active": "87fc52db0e53c854",
|
||||
"active": "cc4f0e641615871b",
|
||||
"lastOpenFiles": [
|
||||
"AI & Data Mining/Week 20/Propositional Logic Examples.md",
|
||||
"AI & Data Mining/Week 20/Chapter 20 Tutorial - Introduction to Propositional Logic.md",
|
||||
"AI & Data Mining/Week 20/Week 20 - Intro to Propositional Logic.md",
|
||||
"AI & Data Mining/Week 20/Propositional Logic Examples.md",
|
||||
"Networking and Security/Week 20/hashcat-exercise/test-dict",
|
||||
"Networking and Security/Week 20/hashcat-exercise/view-sample-password.sh",
|
||||
"Networking and Security/Week 20/hashcat-exercise/crack-these-please-sha512",
|
||||
@@ -245,7 +260,6 @@
|
||||
"Data Structures/AI Notes/ADT Linear List.md",
|
||||
"Data Structures/Focused Exam Revision.md",
|
||||
"Data Structures/GPT Answers to Past Paper/Question 3.md",
|
||||
"Data Structures/GPT Answers to Past Paper/Question 2.md",
|
||||
"Database Systems/Untitled.canvas",
|
||||
"Untitled 1.canvas",
|
||||
"Untitled.canvas"
|
||||
|
@@ -0,0 +1,75 @@
|
||||
1. Which of the following English sentences express a proposition?
|
||||
(a) I think therefore I am.
|
||||
Proposition
|
||||
|
||||
(b) Do as I say, not as I do!
|
||||
Command
|
||||
|
||||
(c) Whenever the assignment x = y is executed, the value of y remains unaltered.
|
||||
Proposition
|
||||
|
||||
(d) Write clearly and legibly.
|
||||
Command
|
||||
|
||||
(e) How do you know your answers are correct?
|
||||
Question
|
||||
|
||||
1. List the atomic propositions and connectives which appear in the following propositions and write down a well-formed formula for each one.
|
||||
|
||||
(a) If it rains then I am going to get wet.
|
||||
Atomic Propositions:
|
||||
It rains
|
||||
I am going to get wet
|
||||
Connectives:
|
||||
If
|
||||
Then
|
||||
Formula: p => q
|
||||
|
||||
(b) Increased spending overheats the economy.
|
||||
Atomic Propositions:
|
||||
Increased spending
|
||||
Overheats the economy
|
||||
Connectives:
|
||||
None, implied non-linguistic
|
||||
Formula: p => q
|
||||
|
||||
(c) Increased spending coupled with tax cuts overheats the economy.
|
||||
Atomic Propositions:
|
||||
Increased spending
|
||||
There are tax cuts
|
||||
Overheated economy
|
||||
Connectives:
|
||||
Coupled with
|
||||
Formula: p ^ q => r
|
||||
|
||||
(d) Overheating economy is a synonym for rise in excess demand.
|
||||
Atomic Propositions:
|
||||
Overheating economy
|
||||
Rise in excess demand
|
||||
Connectives:
|
||||
is a synonym for
|
||||
Formula: p <=> q
|
||||
|
||||
(e) Inflation either rises or does not.
|
||||
Atomic Propositions:
|
||||
Inflation rises
|
||||
Inflation does not rise
|
||||
Connectives:
|
||||
either / or
|
||||
Formula: p
|
||||
|
||||
1. Remove as many brackets as possible from the following propositions without altering their meaning (i.e. the truth table).
|
||||
|
||||
(a) ((q ⇔((¬r) ∨(s ∧p))) ⇔(q ⇒p))
|
||||
(b) (((p ∧(¬q)) ∧r) ∨s)
|
||||
(c) ((p ⇒(q ∨r)) ∧(¬(r ⇒s)))
|
||||
(d) ((¬(¬(¬(q ∨r)))) ⇔(q ⇔r))
|
||||
(e) (p ∨(q ∨r))
|
||||
|
||||
1. Decide using truth tables whether each of the following is a tautology, contradiction or contingency.
|
||||
|
||||
(a) p ⇒¬p
|
||||
|
||||
(b) p ∧q ⇒p
|
||||
|
||||
(c) (p ⇒¬p) ∧(¬p ⇒p)
|
Reference in New Issue
Block a user