Files
G4G0-2/AI & Data Mining/Week 26 - Deductive Proofs.md
2025-03-16 18:59:42 +00:00

160 lines
6.2 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### **Slide Notes:**
---
#### **Slide 0: Learning Objectives**
- Identify genuine variables and variables standing for unknowns.
- Describe the role of inference rules for eliminating and introducing quantifiers.
- Justify constraints on handling variables when eliminating and introducing quantifiers.
- Conduct proofs in predicate logic.
- Prove the validity of an argument presented in English.
---
#### **Slide 1: Contents**
- Recap on inference rules
- Deductive proof in predicate logic
- Genuine variables versus unknown variables
- Extra inference rules for predicate logic
- Constraints on variables
- Summary, reading and references
---
#### **Slide 2: Recap on Inference Rules**
| **Connective** | **Introduction Rule** | **Elimination Rule** |
| ------------------ | --------------------------------------------------------------------- | ------------------------------------------------------------ |
| ∧ (and) | ∧ Intro:$p, q \vdash p \land q$ | ∧ Elim:$p \land q, p \vdash q$ |
| (or) | Intro:$p \vdash p \lor q$,$q \vdash p \lor q$ | Elim:$p \vdash \varnothing$,$p \lor q \vdash \varnothing$x |
| ¬ (not) | N/A | ¬ Elim:$\neg p, q \vdash p$ |
| ⇒ (implies) | ⇒ Intro:$p, p \Rightarrow q \vdash q$ | ⇒ Elim (Modus Ponens):$p \Rightarrow q, p \vdash q$ |
| ⇔ (if and only if) | ⇔ Intro:$p \Rightarrow q, q \Rightarrow p \vdash p \leftrightarrow q$ | ⇔ Elim:$p \leftrightarrow q, p, q \vdash \varnothing$ |
---
#### **Slide 3: Deductive Proof in Predicate Logic**
1. Reduce formulae to propositional form by removing quantifiers.
2. Manipulate formulae using inference rules and logical laws of propositional logic.
3. Reintroduce quantifiers at the end, depending on the goal.
---
#### **Slide 4: Genuine Variables vs. Unknown Variables**
- **Genuine variable**:
- A free variable whose universal quantification yields a true formula.
- **Unknown variable**:
- A free variable whose existential quantification yields a true formula.
---
#### **Slide 5: Exercise**
**Example**:
-$\frac{9}{z} = 3$
-$\text{even}(n) \lor \text{odd}(n)$
| **Variable** | **Status** | **Justification** |
|--------------|-------------------------|-----------------------------------|
|$z$ | Unknown variable |$\exists z \cdot \frac{9}{z} = 3$|
|$n$ | Genuine variable |$\forall n \cdot (\text{even}(n) \lor \text{odd}(n))$|
---
#### **Slide 6: Extra Inference Rules for Predicate Logic**
| **Quantifier** | **Introduction Rule** | **Elimination Rule** |
|-----------------|----------------------------------------|---------------------------------------------------|
|$\forall$(for all) |$\forall \text{Intro}: \varphi(x), x \neq y \vdash \varphi(x)$|$\forall \text{Elim}: \forall x \cdot \varphi(x), \varphi(x) \vdash \varnothing$|
|$\exists$(there exists) |$\exists \text{Intro}: \varphi(x), x \neq y \vdash \exists x \cdot \varphi(x)$|$\exists \text{Elim}: \exists x \cdot \varphi(x), \varphi(x) \vdash \varnothing$|
---
#### **Slide 7: Freeing Variables from$\forall$**
- Example:
-$\forall x \cdot \text{lecturer}(x), \text{lecturer}(bryant)$
-$\forall x \cdot \text{lecturer}(x), \text{lecturer}(y)$
-$y$is a genuine variable.
---
#### **Slide 8: Freeing Variables from$\exists$**
- Example:
-$\exists x \cdot \text{student}(x), \text{student}(y)$
-$y$is an unknown variable.
---
#### **Slide 9: Introduction of$\forall$**
- Constraint:
- Do not introduce$\forall$on the basis of an individual (a constant).
---
#### **Slide 10: Constraint 1**
- When eliminating$\exists$, do not instantiate its variable with a constant.
---
#### **Slide 11: Constraint 2**
- When eliminating$\exists$, do not instantiate its variable with an existing free variable.
---
#### **Slide 12: Constraint 3**
- Do not introduce$\forall$on the basis of an individual (a constant).
---
#### **Slide 13: Constraint 4**
- Do not introduce$\forall$on the basis of an unknown.
---
#### **Slide 14: Constraint 5**
- Do not quantify a variable by introducing$\forall$in a formula if the formula contains another var obtained by eliminating$\exists$.
---
#### **Slide 15: Constraint 6**
- Within the scope of an assumption, do not introduce$\forall$on the basis of a variable appearing in the assumption.
---
#### **Slide 16: Constraint 7**
- Every instantiation, whether following the elimination of a$\forall$or$\exists$, must always be done with a free var, rather than a bound var.
---
#### **Slide 17: Constraint 8**
- Beware of binding any newly quantified var by an unintended quantifier.
---
#### **Slide 18: Summary**
- Use inference rules to eliminate and introduce logical connectives.
- Handle quantifiers carefully, following constraints when eliminating and introducing them.
---
#### **Slide 19: Summary of Constraints**
1. Do not assume a property holds for a particular individual based on it holding for at least one individual.
2. When eliminating$\exists$, do not instantiate its var with a constant or existing free var.
3. Do not introduce$\forall$on the basis of a constant or unknown.
4. Do not quantify a variable by introducing$\forall$if the formula contains another var from$\exists$elimination.
5. Within an assumption, do not introduce$\forall$based on a var in the assumption.
6. Instantiate variables only with free vars, not bound vars.
7. Avoid binding newly quantified vars by unintended quantifiers.
---
#### **Slide 20: Deducing a Conclusion**
Example:
1.$\forall x \cdot (\text{master}(x) \lor \text{slave}(x)) \Rightarrow \text{adult}(x) \land \text{man}(x)$
2.$\neg \forall x \cdot (\text{adult}(x) \land \text{man}(x))$
3.$\exists x \cdot (\neg (\text{adult}(x) \land \text{man}(x)))$
4.$\neg (\text{master}(x) \lor \text{slave}(x))$
5.$\neg \text{master}(x) \land \neg \text{slave}(x)$
6.$\neg \text{master}(x)$
7.$\exists y \cdot (\neg \text{master}(y))$
---